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Abstract

A Casimir operator for the Calogero model with three particles and interaction proportional

to the inverse of the square of the distance between two particles was determined, using Bkl-

operators constructed from the position and momentum operators, which are symmetric under

particle permutations, and satisfy a W1+∞ algebra. Applying simple algebraic transformations

and properties of Weyl ordering, the center-of-mass and total momentum operators were suc-

cessfully decoupled from the Casimir operator. The final expression includes the effects of the

interaction, and contains the classical limit � → 0; detailed calculations and proofs can be

found in the appendix.
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1 Introduction

Many-particle problems appear naturally in Physics, from molecular interactions up to cosmo-

logical processes. As every student of physics knows, many-particle problems are very difficult,

and thanks to the efforts of many scientists and mathematicians, there are nowadays highly

sophisticated mathematical techniques for treating them.

However, a simple question remains: Are there any examples of solvable N-body problems

beyond N = 2? The answer is yes, but it depends on the type of interactions between the

bodies. In this context the seminal work of F. Calogero [3] represents a major achievement,

because it describes a maximally integrable system for N particles [1] with an interaction

potential depending quadratically on the inverse of the distance among two particles. Since its

appearance the Calogero Model has been object of intensive research and many results have

enlarged along the years its original field of study (see for example [2] and the literature index

cited there).

The present work aims to be an introduction to Calogero models considering a simple

problem with just three particles. Based on the work by Correa, Lechtenfeld and Plyushchay

[1], we intend to find a Casimir operator which includes the given interaction potential, it is

symmetric under particle permutations, and very important, the center-of-mass (COM) and

total momentum are explicitly decoupled. This Casimir operator for N = 3 particles will be

expressed using a special type of operator ordering, namely, the Weyl symmetric ordering [4],

and given in terms of a certain class of algebraic operators related in a simple way to the

usual position and momentum operators. Additionally, the final expression should contain the

already known sl(2) Casimir operator for N = 2 particles [1, 2], and it must account for both

free-interaction and classical approximation (Poisson brackets) cases.

Concerning the structure of this work, we start with a brief description of the Calogero

model, with focus on the properties to be used later, then we will introduce the Weyl ordering

and the operators Bkl along with its properties, to proceed with the central idea behind the

calculations for determining this Casimir operator. The detailed steps, proofs and algebraic

calculations are included in the appendix at the end of this work.

1.1 Elements of Calogero Models [1, 2]

In what follows we just give a short description of the Calogero model, with focus on the most

relevant parts for the present work. In particular, our main reference is [1], but a detailed

review on the subject can be found in the work by Polychronakos [2].
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For the mathematical description we use typical position and momentum coordinates xi, pi,

respectively, satisfying
�

xj, pk
�

= iδ
j
k; pk = −i

∂

∂xk
= −i∂k , (1.1)

the indices j, k running from one to N ; being the space flat for this problem, only lower indices

will be employed to denote the components of vectors, tensors, operators, etc.

The Hamiltonian function which describes this N -particle model is given by [1, 2],

H =
1

2

�

i

p2i +
�

i<j

g(g − 1)

(xi − xj)2
, (1.2)

where � = 1 in suitable units and all masses are normalized to the unity. The parameter g is the

coupling of the interaction, being evident its vanishing when g = 0 or g = 1. Moreover, since

the coupling appears in the form g(g − 1), the Hamiltonian does not change when g → 1− g.

According to the literature, there will be N constants of motion Ik, which can be defined in

terms of Dunkl operators [1]

πi = pi + ı
�

j(j �=i)

g

xi − xj
sij ⇐⇒ Di = ∂i −

�

j(j �=i)

g

xi − xj
sij , (1.3)

where sij is the 2-particle permutation operator satisfying:

sijx
i = xjsij; sij∂i = ∂jsij; s2ij = 1 . (1.4)

The definition of Ik is then

Ik = res

�

N
�

µ

πk
µ

�

, (1.5)

being res (A) the restriction of a given operator A to the subspace of states totally symmetric

under two-particle exchange. Those Dunkl operators satisfy a non-trivial relation (though easy

to proof by direct calculation, see Section A.2 of the appendix)

[πi, πj] = 0 ∀i, j = 1, . . . , N , (1.6)

which generates the commutation of the constants of motion Ik between themselves:

[Ik, Il] = 0 ∀ k, l = 1 . . . N . (1.7)

From their definition, it is easy to calculate some integrals of motion Ik; in particular, the

Hamiltonian H in (1.2) corresponds to I2, so we can immediately write

[Ik, H] = 0 . (1.8)
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This is a very important result, and we will make use of it when postulating the new operators

for the Casimir candidate; technically it is said that “the Ik form N involutive constants of

motion”[1].

Considering the operators

D =
1

2

�

i

�

xipi + pix
i
�

, (1.9)

K =
1

2

�

i

�

xi
�2

, (1.10)

together with the Hamiltonian (1.2) they form an sl(2) algebra

[D,H] = 2iH

[D,K] = −2iK

[K,H] = iD

, (1.11)

which possesses a known Casimir element. Combining the operators D and K with the con-

stants of motion Ik, one can show we are in presence of a Witt algebra:

[D, Ik] = ıkIk , (1.12)

[K, Im] =: ılJm . (1.13)

=⇒ ı[Jk, Jl] = (k − l)Jk+l−2 . (1.14)

Before proceeding to analyze the tools required for the determination of the Casimir operator

we give a general description of the program for the next sections:

* We will start by defining the operators to be employed in the Casimir operator Ansatz. In

particular, we will choose a suitable basis for the case N = 3 particles and later all their

commutation relations will be determined. At some point we will explore the possibility

of decoupling the center-of-mass (COM) and total momentum of the system, because the

main goal is to find a Casimir operator as simple as possible, in which center-of-mass and

total momentum terms are decoupled;

* In the next step, we formulate an Ansatz for the Casimir operator in the free case, based

on what we already know from standard quantum and classical mechanics. Since there

will be many unknown coefficients in the proposed operator, we will have to find a system

of equations relating those variables, this being achieved by imposing the vanishing of the

commutators with the basis operators; this is the main part of this work, and here many

algebraic difficulties will appear. Later we will also check that this operator not only give

a quantum solution, but a classical one (using Poisson brackets), too;
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* After having found a free Casimir operator, we will switch-on the interaction g in the

Hamiltonian function. The way in which this interaction affects the basis operators and

their commutation relations will be analyzed, and considering the new conditions we will

search for the modified Casimir operator.

For the sake of simplicity only the main results will be shown, because many algebraic calcu-

lations were needed. In the appendix (Section A) the reader can find many algebraic details

concerning those results, explicit derivations and the underlying ideas behind the results.
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2 Operators Bkl

2.1 Definitions

Due to the role it will play in latter sections, we start by defining Weyl ordering of operators

[4]: Given k operators Ak, their Weyl ordering product reads

W (A1, A2, . . . , Ak) := (A1|A2| . . . |Ak) =
1

k!

�

σ

Aσ(1) . . . Aσ(k) , (2.1)

with “σ” one of the k! permutations between k elements. Another definition of this special

ordering uses an exponential function

W (A1, . . . , An) =
∂

∂α1

. . .
∂

∂αn

eα1A1+···+αnBn

�

�

�

�

α1=···=αn=0

, (2.2)

but we will employ the first definition, owing to its simplicity when expanding the algebraic

expressions containing Weyl-ordered products. Here are some practical examples of this new

operator ordering:

(A|B) =
1

2
(AB +BA) , (2.3)

(A|B|B) =

�

3!

2!

�−1
�

AB2 + BAB + B2A
�

. (2.4)

It is highly important to note the difference between (2.4) and the following product:

(A|B2) =
1

2

�

AB2 + B2A
�

�= (A|B|B) . (2.5)

This difference will play a crucial role when determining the system of equations governing the

equations associated to the coefficients in the Casimir operator.

Returning to Polychronakos [2], the idea is to build operators which are symmetric under

particle permutations; clearly, the position and momenta coordinates do not satisfy this require-

ment, but with a suitable linear combination of those operators the permutation symmetry is

preserved. For example, one can build the operators [2]

Ikl =
N
�

µ

: xk
µp

l
µ : , (2.6)

with :: some definite operator ordering (normal ordering, etc); they are invariant under particle

permutations. Defining

I(k, q) =
∞
�

m,n=0

kmqn

m!n!
Im,n , (2.7)

and assuming Weyl ordering for the Im,n, it is found

[I(k, q), I(k�, q�)] = 2ı sin
(kq� − k�q)

2
· I(k + k�, q + q�) , (2.8)
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being the lowest order in �

[Im,n, Im�,n� ] = ı�(mn� − nm�)Im+m�−1,n+n�−1 +O(�3) . (2.9)

This last expression is an example of the so-called W1+∞-algebras. How can we visualize this

algebra? With the help of the Runge-Lenz vector associated to planetary motion, or particle

in a Coulomb field [5] :

H =
p2

2m
−

µ

r
. (2.10)

The additional symmetry of this Hamiltonian is the Runge-Lenz vector

�R = �L× �p+ µ
�r

r
. (2.11)

Calculating the commutators between the components of the angular momentum �L and Runge-

Lenz vector, the results describe a non-linear algebra

[Li, Lj] = �ijkLk , (2.12)

[Ri, Lj] = �ijkRk , (2.13)

[Ri, Rj] = �ijk

�

λ�L2 − 2H
�

Lk , (2.14)

because the last term in the last commutator is HLk, which clearly is not linear. This structure,

namely, a term with just one operator plus additional terms which are product of operators is

an example of the so-called W -algebra. Another example is given by the Virasoro algebra in

String Theory; defining Ln := zn∂z

[C,Lm] = 0 ,

[Ln, Lm] = (m− n)Lm+n +
1

12

�

m3 −m
�

δm,−n , (2.15)

in this case with commutator of the form some operator Lj plus a constant term. A general-

ization is the W3 associative algebra [6]:

[1, Ln] = [1,Wm] = 0 ,

[Ln, Lm] = (m− n)Lm+n +
1

12

�

m3 −m
�

δm,−n ,

[Ln,Wm] = (2n−m)Wn+m , (2.16)

[Wm,Wn] =
c

360
m(m2 − 1)(m2 − 4)δm+n,0+

+ (m− n)

�

1

15
(m+ n+ 3)(m+ n+ 2)−

1

6
(m+ 2)(n+ 2)Lm+n

�

+

+ β
�

n

(Lm−nLn)−
3

10
(m+ 3)(m+ 2)Lm . (2.17)
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Motivated by the previous ideas, the Casimir operator will be expressed in terms of the following

Bkl-operators, considering Weyl ordering:

Bkl =
1

2

N
�

α=1

�

xk
αp

l
α + plαx

k
α

�

, (2.18)

being “N ” the number of particles and [xk, pl] = iδkl (� = 1). Moreover, by construction they

will satisfy a W -algebra. A few important conventions before we continue:

* The operator xk is considered as one operator and not as the product of k x-operators;

the same applies to pl. With this in mind, we can also define

Bkl =
N
�

µ=1

�

xk
µ|p

l
µ

�

. (2.19)

* Later we will see expressions like (Bkl|Bmn|Bop). In those cases we always mean Weyl

ordering expansion for three operators Bkl, Bmn and Bop:

(Bkl|Bmn|Bop) =
1

3!
[BklBmnBop + BklBopBmn + BmnBklBop+

+BmnBopBkl + BopBklBmn + BopBmnBkl] . (2.20)

These operators can be related to the work [1], in which D, K, Im and Jn are used (eqs. (1.12)

to (1.14)):

D → B11; K → B20; Im → B0m; Jn → B1,n−1 . (2.21)

No matter if we are in the free or interaction case, the relations between D, K, Im and Jn

must be reproduced when using the operators Bkl; this is a simple test for verifying that our

proposed method is consistent.

2.2 Commutator [Bkl, Bmn]

Since the Casimir operator will be expressed in terms of the operators Bkl, and by construction it

commutes with any operator of the given algebra, the commutation relations for these operators

must be calculated. One can do this directly, using the definition of each operator Bkl in terms

of xk
α and plα, but it sounds more reasonable trying to find a general formula and then to apply

it in the case of the basis operators, for example. How to find such a general formula? By

direct calculation:

i) We must get a general expression for [xj, p] and [x, pk], j, k ∈ N;

15



ii) Then we proceed to find [xj, pk] in terms of xαpβ and/or pβxα (here the order is impor-

tant!!);

iii) Using the definition of Bkl, namely

Bkl =
1

2

N
�

α=1

�

xk
αp

l
α + plαx

k
α

�

, (2.22)

we calculate the commutator [Bkl, Bmn];

4) By expanding in powers of xjpk (or pkxj) up to some order (which is depending on the

number of particles of the system), and collecting similar terms we will try to reorder the

expressions in terms of suitable combinations Bk+m−α;l+n−α with α = 1, . . . , 3.

The calculations, though being trivial in most of the cases, are lengthy and cumbersome; just

a view to the formal expansion of the commutator [Bkl, Bmn] shows the algebraic complexity:

[Bkl, Bmn] =
1

4

N
�

α=1

N
�

β=1

�

−xk
α

�

xm
β , p

l
α

�

pnβ + xm
β

�

xk
α, p

n
β

�

plα +

− xk
αp

n
β

�

xm
β , p

l
α

�

+
�

xk
α, p

n
β

�

xm
β p

l
α + plαx

m
β

�

xk
α, p

n
β

�

+

−
�

xm
β , p

l
α

�

pnβx
k
α + plα

�

xk
α, p

n
β

�

xm
β − pnβ

�

xm
β , p

l
α

�

xk
α

�

. (2.23)

By this reason the description of the main steps is included in the appendix A.1. In the end,

we obtain the following results:

�

Bkl, Bmn

�

= iC1
klmnBk+m−1;l+n−1 + iC3

klmnBk+m−3;l+n−3 + O (Bk+m−5;l+n−5) , (2.24)

C1
klmn = kn− lm , (2.25)

C3
klmn =

1

12

�

k(k − 1)n(n− 1) [(k − 2 + 3m)(n− 2 + 3l)− 3lm] +

l(l − 1)m(m− 1) [(l − 2 + 3n)(m− 2 + 3k)− 3kn]
�

. (2.26)

With the above found formulas is the first task accomplished. We recall, our goal is to find a

Casimir operator using the operators Bkl. Is there any basis for these operators? The answer

16



is yes, and this basis will depend on the number of particles. For two particles, the basis is:

B00 =
2
�

i=1

= 2 ,

B10 =
2
�

i=1

xi = x1 + x2 ,

B01 =
2
�

i=1

pi = p1 + p2 ,

B20 =
2
�

i=1

x2
i = x2

1 + x2
2 ,

B02 =
2
�

i=1

p2i = p21 + p22 ,

B11 =
1

2

2
�

i=1

xipi + pixi =
1

2
(x1p1 + p1x1 + x2p2 + p2x2) . (2.27)

How many independent Bkl operators for N = 3 particles are there? The rule states that all

operators Bkl with k + l ≤ N are linear independent. Then, the basis for our problem reads:






























Level 0: B00

Level 1: B10 B01

Level 2: B20 B02 B11

Level 3: B30 B21 B12 B03































. (2.28)

Though B00 = 3 is just a number, we count it as part of the basis, because some linear dependent

operators could have constants terms and those ones are represented by some multiple of

B00. The operators B10 and B01 are the center-of-mass and total momentum, respectively;

in a first Ansatz for the Casimir operator they could appear, but since the main idea of this

project is to decouple the center-of-mass operators, necessarily a transformation must contain

a combination of B10 and B01 to achieve its “elimination” and so to simplify the remaining

algebraic calculations.

It is important to mention that the basis operators for N = 2 and N = 3 particles are already

Weyl-ordered products; this is evident for operators of the form Bk;0 and B0;l, with k, l = 0 . . . N ,

also for B11. For the case B21 one must expand the Weyl ordering of x2
αpα as follows

W (x2
αpα) =

�

3!

2!

�−1
�

x2
αpα + xαpαxα + pαx

2
α

�

, (2.29)

and by rewriting xαpαxα in terms of x2
αpα and pαx

2
α one gets W (B21) = B21, the technique

being the same for the operator B12. With the same argument, this interesting property of the

basis operators is false for N ≥ 4.
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Having defined a basis of operators, the next step is to calculate their commutation relations

using the formulas (2.24), (2.25) and (2.26); the results are shown in the Table 1.

ı−1[Bkl, Bmn] B10 B01 B20 B02 B11 B30 B21 B12 B03

B10 0 N 0 2B01 B10 0 B20 2B11 3B02

B01 −N 0 −2B10 0 −B01 −3B20 −2B11 −B02 0

B20 0 2B10 0 4B11 2B20 0 2B30 4B21 6B12

B02 −2B01 0 −4B11 0 −2B02 −6B21 −4B12 −2B03 0

B11 −B10 B01 −2B20 2B02 0 −3B30 −B21 B12 3B03

B30 0 3B20 0 6B21 3B30 0 3B40 6B31

+9B22

+3B00

B21 −B20 2B11 −2B30 4B12 B21 −3B40 0
+3B22

+2B00

6B13

B12 −2B11 B02 −4B21 2B03 −B12 −6B31

−3B22

−2B00

0 3B04

B03 −3B02 0 −6B12 0 −3B03

−9B22

−3B00

−6B13 −3B04 0

Table 1: Commutators [Bkl, Bmn].

A brief analysis of them shows:

* The commutators between B10 and B01 yield either B00 = N or zero;

* There is a subsector generated by B20, B02 and B11, which is closed and resembles strongly

the angular momentum algebra from Quantum Mechanics;

* Not all the commutators generate linear independent operators. For example

[B30, B03] = 9iB22 + 3iB00 (2.30)

or

[B30, B12] = 6iB31 . (2.31)

So, there arises the extra problem of expressing the operators

B40, B04, B31, B13, B22 (2.32)
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using the basis (2.28). How can this be achieved? By means of Weyl ordering, as in

Section 2.3 is carefully analyzed. For example:

B22 =
2

3
(21|01) +

1

6
(20|02) +

2

3
(12|10) +

1

3
(11|11)+

−
1

6
(20|01|01)−

2

3
(11|10|01)−

1

6
(10|10|02)+

+
1

6
(10|10|01|01)−

B00

2
. (2.33)

This operator shows the difficulties that will appear when determining the Casimir oper-

ator. For this reason, we will search for a suitable change of basis, in which the center-

of-mass and total momentum will not explicitly appear and B22 will be of the form

B�
22 ∼ α(20�|02�) + β(11�|11�) + γ, (2.34)

with α, β, γ ∈ R.

2.3 B22 - General Case

Considering COM, the operator B22 can be expressed as follows according to the number N of

particles:

B22 = A (21|01) + B (20|02) + C (12|10) +D (11|11) + E (20|10|10) + F (11|10|01)+

+G (10|10|02) +H (10|10|01|01) + J, N = 3 , (2.35)

B22 = B (20|02) +D (11|11) + E (20|10|10) + F (11|10|01)+

+G (02|10|10) +H (10|10|01|01) + J, N = 2 . (2.36)

For N ≥ 4 this operator is part of the basis, and there is no possible decomposition in terms of

lower order Bkl operators. In both cases N = 2 and N = 3 the technique to be applied is very

simple: finding expressions for each operator by choosing the ordering xjpk, then we insert in

the respective formula and compare coefficients in the given expression for B22:

B22 =
1

2

N
�

α=1

�

x2
α, p

2
α

�

=
1

2

N
�

α=1

�

2x2
αp

2
α −
�

x2
α, p

2
α

��

=
N
�

α

x2
αp

2
α −

1

2

N
�

α

2i · (xαpα + pαxα)

=
N
�

α

x2
αp

2
α −

1

2

N
�

α

2i · (2xαpα − i)

=
N
�

α=1

x2
αp

2
α − 2i

N
�

α=1

xαpα +Ni2 . (2.37)
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Similarly:

B11 =
1

2

N
�

α=1

{xα, pα} =
1

2

N
�

α=1

(2xαpα − [xα, pα]) =
N
�

α

xαpα −
Ni

2
, (2.38)

B21 =
1

2

N
�

α=1

�

x2
α, pα

�

=
N
�

α=1

x2
αpα −

1

2

�

x2
α, pα

�

=
N
�

α

x2
αpα − i

N
�

α

xα , (2.39)

B12 =
1

2

N
�

α=1

�

xα, p
2
α

�

=
N
�

α=1

xαp
2
α −

1

2

�

xα, p
2
α

�

=
N
�

α

xαp
2
α − i

N
�

α

pα . (2.40)

We describe the general method in two cases: (21|01) and (10|10|01|01). In all other cases the

procedure is the same, and for this reason we only indicate the results.

A) (21|01). Reordering the Weyl-ordered product:

(21|01) =
1

2
{(21), (01)}

= (21) · (01)−
1

2
[(21), (01)]

= (21) · (01)− i(11) . (2.41)

Inserting (2.39) and (2.38) in the last equation we get:

(21|01) =

�

N
�

α

x2
αpα − i

N
�

α

xα

�

N
�

β

pβ − i

N
�

α

xαpα +
Ni2

2

=
N
�

α

x2
αp

2
α +

N
�

α�=β

x2
αpαpβ − 2i

N
�

α

xαpα − i

N
�

α�=β

xαpβ +
Ni2

2
. (2.42)

B) (10|10|01|01). Applying the formula

(A|B|C|D) =
1

4
[A(B|C|D) + B(A|C|D) + C(A|B|D) +D(A|B|C)] , (2.43)

the expression to be reduced is

(10|10|01|01) =
1

2
· (10) · (10|01|01) +

1

2
· (01) · (10|10|01) . (2.44)

For the first term:

3(10|01|01) = (10) · (01)2 + 2 · (01) · (10|01)

3(10|01|01) = (10) · (01)2 + 2 · (10|01) · (01)− 2Ni · (01)

3(10|01|01) = 3 · (10) · (01)2 − 3Ni · (01)

(10|01|01) = (10) · (01)2 −Ni · (01) , (2.45)
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∴ 10 · (10|01|01) = (10)2 · (01)2 −Ni · (10) · (01) . (2.46)

In the second term of (2.44) we change the order of the factors:

(01) · (10|10|01) = (10|10|01) · (01) + [01, (10|10|01)]

= (10|10|01) · (01)− 2Ni · (10|01)

= (10|10|01) · (01)− 2Ni · (10) · (01) +N2i2 . (2.47)

Transforming (10|10|01):

3(10|10|01) = 2 · (10) · (10|01) + 01 · (10|10)

3(10|10|01) = 2 · (10)2 · (01)−Ni · (10)− 2Ni · (10) + (10)2 · (01)

3(10|10|01) = 3 · (10)2 · (01)− 3Ni · (10)

(10|10|01) = (10)2 · (01)−Ni · (10) . (2.48)

Inserting (2.48) in (2.47)

(01) · (10|10|01) = (10)2 · (01)2 − 3Ni · (10) · (01) +N2i2 . (2.49)

Combining (2.46) and (2.49) and inserting in (2.44), we arrive to the result

(10|10|10|01) = (10)2 · (01)2 − 2Ni · (10) · (01) +
N2i2

2
. (2.50)

Finally, after replacement of B10 and B01, the expression for (10|10|01|01) reads

(10|10|01|01) =
N
�

α

x2
αp

2
α + 2

N
�

α�=β

x2
αpαpβ + 2

N
�

α�=β

xαxβp
2
β +

N
�

α�=β

x2
αp

2
β +

N
�

α�=β �=γ

x2
αpβpγ+

+ 2
N
�

α�=β

xαxβpβpα + 4
N
�

α�=β �=γ

xαxβpβpγ +
N
�

α�=β �=γ

xαxβp
2
γ +

N
�

α�=β �=γ �=τ

xαxβpγpτ

− 2iN
N
�

α

xαpα − 2Ni

N
�

α�=β

xαpβ +
N2i2

2
. (2.51)

When calculating the sums, one must expand carefully, because there will be sums over two,

three and four different indices, and all possible permutations must be included. For example

�

α,β,γ

f(α, β, γ) =
�

α=β=γ

f(α,α,α)+

�

α=β �=γ

f(α,α, γ) +
�

α=γ �=β

f(α, β,α) +
�

α�=β=γ

f(α, β, β)+

�

α�=β �=γ

f(α, β, γ) , (2.52)
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�

α,β,γ,δ

f(α, β, γ, δ) =
�

α=β=γ=δ

f(α,α,α,α) +
�

α=β=γ �=δ

f(α,α,α, δ)+

�

α=β=δ �=γ

f(α,α, γ,α) +
�

α=γ=δ �=β

f(α, β,α,α) +
�

β=γ=δ �=α

f(α, β, β, β)+

�

(α=β) �=(γ=δ)

f(α,α, γ, γ) +
�

(α=β) �=(γ �=δ)

f(α,α, γ, δ) +
�

(α=γ) �=(β=δ)

f(α, β,α, β)+

�

(α=γ) �=(β �=δ)

f(α, β,α, δ) +
�

(α=δ) �=(β=γ)

f(α, β, β,α) +
�

(α=δ) �=(β �=γ)

f(α, β, γ,α)+

�

(α�=δ) �=(β=γ)

f(α, β, β, δ) +
�

(α�=γ) �=(β=δ)

f(α, β, γ, β) +
�

(α�=β) �=(γ=δ)

f(α, β, γ, γ)+

�

α�=β �=γ �=δ

f(α, β, γ, δ) . (2.53)

Moreover, some terms will not appear in the case N = 3 particles; the last term of (2.53)

N
�

α�=β �=γ �=δ

f(α, β, γ, δ) , (2.54)

will vanish, because it is not possible to find four different particles in a problem with just three

of them.

Applying the same procedure to the rest of the terms in B22, these are the final results:

(21|01) =
N
�

α

x2
αp

2
α +

N
�

α�=β

x2
αpαpβ − 2i

N
�

α

xαpα − i

N
�

α�=β

xαpβ +
Ni2

2
, (2.55)

(20|02) =
N
�

α

x2
αp

2
α +

N
�

α�=β

x2
αp

2
β − 2i

N
�

α

xαpα +Ni2 , (2.56)

(12|10) =
N
�

α

x2
αp

2
α +

N
�

α�=β

xαxβp
2
β − 2i

N
�

α

xαpα − i

N
�

α�=β

xαpβ +
Ni2

2
, (2.57)

(11|11) =
N
�

α

x2
αp

2
α +

N
�

α�=β

xαxβpβpα − i(N + 1)
N
�

α

xαpα +
N2i2

4
, (2.58)

(20|01|01) =
N
�

α

x2
αp

2
α + 2

N
�

α�=β

x2
αpαpβ +

N
�

α�=β

x2
αp

2
β +

N
�

α�=β �=γ

x2
αpβpγ+

− 2i
N
�

α

xαpα − 2i
N
�

α�=β

xαpβ +
2Ni2

3
, (2.59)

(11|10|01) =
N
�

α

x2
αp

2
α +

N
�

α�=β

x2
αpαpβ +

N
�

α�=β

xαxαpβpα +
N
�

α�=β

xαxβp
2
β +

N
�

α�=β �=γ

xαxβpβpγ+

− i(N + 1)
N
�

α

xαpα − i

�

N

2
+ 1

� N
�

α�=β

xαpβ +
Ni2

12
(3N + 2) , (2.60)
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(02|10|10) =
N
�

α

x2
αp

2
α +

N
�

α�=β

x2
αp

2
β + 2

N
�

α�=β

xαxβp
2
β +

N
�

α�=β �=γ

xαxβp
2
γ+

− 2i
N
�

α

xαpα − 2i
N
�

α�=β

xαpβ +
2Ni2

3
, (2.61)

(10|10|01|01) =
N
�

α

x2
αp

2
α + 2

N
�

α�=β

x2
αpαpβ + 2

N
�

α�=β

xαxβp
2
β +

N
�

α�=β

x2
αp

2
β +

N
�

α�=β �=γ

x2
αpβpγ+

+ 2
N
�

α�=β

xαxβpβpα + 4
N
�

α�=β �=γ

xαxβpβpγ +
N
�

α�=β �=γ

xαxβp
2
γ − 2iN

N
�

α

xαpα − 2Ni

N
�

α�=β

xαpβ+

+
N2i2

2
. (2.62)

2.3.1 B22 - General Case with N = 3

Considering the constraint N = 3, the set of independent operators corresponds to B10, B01,

B11, B20, B02, B30, B21, B12, B03. The Ansatz was

B22 = A (21|01) + B (20|02) + C (12|10) +D (11|11) + E (20|01|01) + F (11|10|01)+

+G (10|10|02) +H (10|10|01|01) + J . (2.63)

Replacing with the respective expansions of the Weyl-ordered products, and comparing order

by order, the following system of equations is to be solved:





























































1 1 1 1 1 1 1 1 0

2 2 2 N + 1 2 N + 1 2 2N 0

N

2
N

N

2

N2

4

2N

3

N

12
(3N + 2)

2N

3

N2

2
−1

1 0 1 0 2
N

2
+ 1 2 2N 0

1 0 0 0 2 1 0 2 0

0 1 0 0 1 0 1 1 0

0 0 1 0 0 1 2 2 0

0 0 0 1 0 1 0 2 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 4 0

0 0 0 0 0 0 1 1 0











































































































A

B

C

D

E

F

G

H

J















































=















































1

2

N

0

0

0

0

0

0















































. (2.64)

There is a unique solution for the coefficients, given by

A =
2

3
; B =

1

6
; C =

2

3
; D =

1

3
; E = −

1

6
; F = −

2

3
; G = −

1

6
; H =

1

6
; J = −

3

2
= −

B00

2
. (2.65)
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The expression for B22 is the following one:

B22 =
2

3
(21|01) +

1

6
(20|02) +

2

3
(12|10) +

1

3
(11|11)−

1

6
(20|01|01)−

2

3
(11|10|01)+

−
1

6
(10|10|02) +

1

6
(10|10|01|01)−

B00

2
. (2.66)

The same method is applied for the rest of the Bkl operators with k + l > 3, being the found

expressions for them:

(40) =
4

3
(30|10) +

1

2
(20|20)− (20|10|10) +

1

6
(10|10|10|10) , (2.67)

(04) =
4

3
(03|01) +

1

2
(02|02)− (02|01|01) +

1

6
(01|01|01|01) , (2.68)

(31) =
1

3
(30|01)+ (21|10)+

1

2
(20|11)−

1

2
(20|10|01)+ −

1

2
(11|10|10)+

1

6
(10|10|10|01) , (2.69)

(13) =
1

3
(10|03) + (12|01) +

1

2
(11|02)−

1

2
(10|02|01)−

1

2
(11|01|01) +

1

6
(10|01|01|01) . (2.70)
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2.4 Center-of-mass decoupling for N = 3 particles

The commutators between the basis operators were already determined in the previous section,

and operators Bkl with k + l > 3 appeared, which must be expressed in terms of the basis

operators, using Weyl ordering, a fact that complicates the expressions considerably. By this

reason, the following transformation was found, which clearly simplifies the expressions and

future calculations:

(10�) = (10)

(01�) = (01)

(00�) = (00) = N = 3



















, (2.71)

(20�) = (20)−
1

3
(10|10)

(11�) = (11)−
1

3
(10|01)

(02�) = (02)−
1

3
(01|01)



































, (2.72)

(30�) = (30)− (20|10) +
2

9
(10|10|10)

(21�) = (21)−
1

3
(20|01)−

2

3
(11|10) +

2

9
(10|10|01)

(12�) = (12)−
2

3
(11|01)−

1

3
(10|02) +

2

9
(10|01|01)

(03�) = (03)− (02|01) +
2

9
(01|01|01)



















































. (2.73)

With this transformation it is easy to prove

[(kl�), (mn)] = 0; (kl) = (10) . . . (03); (mn) = {(10), (01)} , (2.74)

i.e. the B�
kl operators commute by construction with B10 (COM) and B01 (total momentum).

As a next step, the commutators [Bkl, Bmn] must be calculated in this new basis. For example

[30�, 03�] = [30, 03]− [30, (02|01)] +
2

9
· [30, (01|01|01)]

− [(20|10), 03] + [(20|10), (02|01)]−
2

9
· [(20|10), (01|01|01)]

+
2

9
· [(10|10|10), 03]−

2

9
· [(10|10|10), (02|01)] +

4

81
· [(10|10|10), (01|01|01)] , (2.75)

and the result must be rewritten in terms of B �
kl, etc. (see appendix A.3). After some lengthy

calculations, the new commutators are shown in the Table 2.
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i−1[Bkl, Bmn] (20�) (02�) (11�) (30�) (21�) (12�) (03�)

(20�) 0 4(11�) 2(20�) 0 2(30�) 4(21�) 6(12�)

(02�) −4(11�) 0 −2(02�) −6(21�) −4(12�) −2(03�) 0

(11�) −2(20�) 2(02�) 0 −3(30�) −(21)� (12�) 3(03�)

(30�) 0 6(21�) 3(30�) 0
1

2
(20�|20�) (20�|11�)

−
3

2
(20�|02�)

+3(11�|11�)

−4

(21�) −2(30�) 4(12�) (21�) −
1

2
(20�|20�) 0

+
5

6
(20�|02�)

−
1

3
(11�|11�)

+
4

3

(11�|02�)

(12�) −4(21�) 2(03�) −(12�) −(20�|11�)

−
5

6
(20�|02�)

+
1

3
(11�|11�)

−
4

3

0
1

2
(02�|02�)

(03�) −6(12�) 0 −3(03�)

+
3

2
(20�|02�)

−3(11�|11�)

+4

−(11�|02�) −
1

2
(02�|02�) 0

Table 2: Basis commutators after COM-decoupling.

From the tabulated results it can be seen, among other things, that effectively the COM and

total momentum contributions were decoupled, and the commutators show results depending

on B�
20, B

�
02, B

�
11, B

�
30, B

�
21, B

�
12 and B�

03. It must be emphasized that this new basis includes

the operators B10 and B01, which by construction commute with B �
kl. In this way, we can

directly work in this new basis and postulate the Casimir candidate C in terms of it, being

automatically guaranteed [C, B10] = 0 and [C, B01] = 0.

Another fact visible from the tables has to do with the algebra those operators obbey, being

clearly a W-algebra:

* Commutators between level-2 operators, namely, B �
20, B

�
02 and B�

11 yield again an operator

of level 2;

* The commutator of level-3 operators B �
30, B

�
21, B

�
12, B

�
03 with level-2 operators produces

a level-3 operator;
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* Finally, commutators between level-3 operators generate constants and non-linear terms

containing Weyl-ordered products of level-2 operators.

In summary, we have found the necessary structure for postulating a Casimir operator C, with

both decoupled COM and total momentum. We will employ consistently these B �
kl operators

in what follows, but always bearing in mind, that their commutators contain also non-linear

terms as constants, a fact that will have interesting algebraic consequences, like for example,

the appearance of composed or non-pure Weyl-ordered products when dealing with [C, 30�] = 0

and [C, 21�] = 0. Before formulating our Ansatz for the free case, let us do a brief digression on

Casimir operators in Quantum Mechanics.
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2.5 Casimir Operator in Quantum Mechanics

According to standard texts on Group Theory [7, 8, 9], and Quantum Physics [10, 11, 12]

for a given set of operators with well-defined commutation relations between them, a Casimir

operator [13] “is any element in the center of the universal enveloping algebra that commutes

with any element of the given Lie algebra”; this type of operators are used in connection with

representation theory of semisimple Lie algebras, in particular, for irreducible representations

each Casimir operator is represented by a multiple of the identity [13]. In Physics the example

par excellence is the angular momentum algebra:

[Jz, Jx − iJy] = −2i (Jx − iJy) , (2.76)

[Jz, Jx + iJy] = 2i (Jx + iJy) , (2.77)

[Jx − iJy, Jx + iJy] = 2i2Jz . (2.78)

In this case, the Casimir operator is given by the square of the total angular momentum �J :

J2 = J2
x + J2

y + J2
z . (2.79)

If we consider the algebra associated to the operators {B20, B02, B11} in Table 2

[B11, B20] = −2iB20 , (2.80)

[B11, B02] = 2iB02 , (2.81)

[B20, B02] = 4iB11 , (2.82)

they form a sl(2) Lie-Algebra, whose Casimir operator will have the same form as J 2 but

written in terms of the operators Bkl from the level 2:

Jx − iJy →
B20

2
, (2.83)

Jx + iJy →
B02

2
, (2.84)

Jz →
B11

2i
, (2.85)

J2 = J2
x + J2

y + J2
z → C22 =

1

4

�

W (B20B02)− B2
11

�

. (2.86)

We expect that our Casimir candidate does contain this contribution, up to a constant; however,

there will be other contributions considering level-3 operators and their associated non-linear

operators, such as B22 or B40, etc. Which form should the candidate exhibit? In the appendix

A.4 a method is proposed to motivate and make plausible the proposed Casimir candidate, to

be analyzed in the next section.
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3 Casimir Operator

3.1 Free Case Ansatz

Considering the treatment for the two-particle case of the previous section (and seen in the

appendix A.4), the following expression is proposed for the Casimir operator, in which the

center-of-mass is already decoupled:

C = Cα + Cβ + Cγ + Cδ + C� + Cζ . (3.1)

Cα = α1 (20
�|20�|20�|02�|02�|02�) + α2 (20

�|20�|11�|11�|02�|02�)+

+ α3 (20
�|11�|11�|11�|11�|02�) + α4 (11

�|11�|11�|11�|11�|11�) , (3.2)

Cβ = β1(30
�|30�|02�|02�|02�) + β2(30

�|21�|11�|02�|02�)+

+ β3(30
�|20�|12�|02�|02�) + β4(30

�|20�|11�|03�|02�)+

+ β5(30
�|12�|11�|11�|02�) + β6(30

�|11�|11�|11�|03�)+

+ β7(21
�|21�|20�|02�|02�) + β8(21

�|21�|11�|11�|02�)+

+ β9(21
�|20�|20�|03�|02�) + β10(21

�|20�|12�|11�|02�)+

+ β11(21
�|20�|11�|11�|03�) + β12(21

�|12�|11�|11�|11�)+

+ β13(20
�|20�|20�|03�|03�) + β14(20

�|20�|12�|12�|02�)+

+ β15(20
�|20�|12�|11�|03�) + β16(20

�|12�|12�|11�|11�) , (3.3)

Cγ = γ1 (30
�|30�|03�|03�) + γ2 (30

�|21�|12�|03�) + γ3 (30
�|12�|12�|12�)+

+ γ4 (21
�|21�|21�|03�) + γ5 (21

�|21�|12�|12�) , (3.4)

Cδ = δ1 (20
�|20�|02�|02�) + δ2 (20

�|11�|11�|02�) + δ3 (11
�|11�|11�|11�) , (3.5)

C� = �1 (30
�|12�|02) + �2 (30

�|11�|03) + �3 (21
�|21�|02)+

+ �4 (21
�|20�|03) + �5 (21

�|12�|11) + �6 (20
�|12�|12) , (3.6)

Cζ = ζ1 (20
�|02�) + ζ2 (11

�|11�) . (3.7)

There are six contributions in the Ansatz; each contribution of the above expression will be

called sector. A sector can be labeled by T i
jk, meaning the contribution with i-factors in the
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Weyl-ordered product and index order sum j, k. With this notation, the six sectors are denoted

as

Cα := T 6
66; Cβ := T 5

66; Cγ := T 4
66; Cδ := T 4

44; C� := T 3
44; Cζ := T 2

22 . (3.8)

According to the index sum in each Weyl-ordered product, we can distinguish three groups in

(3.1):

* A 6, 6-group formed by the sectors Cα, Cβ and Cγ. Cα contains products of level-2 operators,

in Cγ only level-3 operators appear, while the sector Cβ comprises sixteen 5-products

mixing level-2 and -3 operators;

* The second 4, 4-group with sectors Cδ and C�, appearing in the first of them only level-2

operators, in the second again mixed products with level-2 and -3 operators;

* The 2, 2-sector Cζ alone, containing only level-2 operators, and giving account of the

Casimir for the sl(2) subalgebra.

As we will see in the coming sections, the written order of the Casimir candidate is related to

the dimensions of the coefficients in terms of �. Thus, the sectors Cα, Cβ and Cγ have coefficients

whose order is �
0, and they will remain in the classical case when � → 0; however, Cδ, C� and

Cζ will be quantum corrections of order �2 and �
4, respectively. Those statements will be fully

confirmed by the calculations.

The main task to be accomplished in this section is to determine all the coefficients in the

expressions (3.1), or at least as many as possible. How will this be achieved? In short terms,

calculating commutators with some basis operators and by imposing its vanishing, a system of

equations will be obtained. Due to the number of coefficients, it is expected an over-determined

system, which evidently will complicate the algebra, and for this reason a mathematical software

will be used, e.g. MapleTM.
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3.2 Calculations for [C, B �
20] = 0

We show the procedure for determining the coefficients in the Cβ-sector, the same method gilts

for all other sectors and cases [C, 30�] = 0 and [C, 21�] = 0; for the sake of simplicity, all the

primes will be omitted. Since B20 , B02 and B11 form a closed subgroup (see Table 2), we can

choose any of these operators, we will work with B20. Let us recall the full expression for Cβ:

Cβ = β1(30|30|02|02|02) + β2(30|21|11|02|02) + β3(30|20|12|02|02) + β4(30|20|11|03|02)+

+ β5(30|12|11|11|02) + β6(30|11|11|11|03) + β7(21|21|20|02|02) + β8(21|21|11|11|02)+

+ β9(21|20|20|03|02) + β10(21|20|12|11|02) + β11(21|20|11|11|03) + β12(21|12|11|11|11)+

+ β13(20|20|20|03|03) + β14(20|20|12|12|02) + β15(20|20|12|11|03) + β16(20|12|12|11|11) (3.9)

For each term we determine the value of the commutator with B20 := (20); for example:

[(30|30|02|02|02), 20] = 3(30|30|02|02|[02, 20]) = −12i(30|30|11|02|02) . (3.10)

(A|B|C|D|E) ∈ Cβ i−1 [(A|B|C|D|E), 20]

(30|30|02|02|02) −12(30|30|11|02|02)

(30|21|11|02|02) −2(30|30|11|02|02)− 2(30|21|20|02|02)− 8(30|21|11|11|02)

(30|20|12|02|02) −4(30|21|20|02|02)− 8(30|20|12|11|02)

(30|20|11|03|02) −2(30|20|20|03|02)− 6(30|20|12|11|02)− 4(30|20|11|11|03)

(30|12|11|11|02) −4(30|21|11|11|02)− 4(30|20|12|11|02)− 4(30|12|11|11|11)

(30|11|11|11|03) −6(30|20|11|11|03)− 6(30|12|11|11|11)

(21|21|20|02|02) −4(30|21|20|02|02)− 8(21|21|20|11|02)

(21|21|11|11|02) −4(30|21|11|11|02)− 4(21|21|20|11|02)− 4(21|21|11|11|11)

(21|20|20|03|02) −2(30|20|20|03|02)− 6(21|20|20|12|02)− 4(21|20|20|11|03)

(21|20|12|11|02) −2(30|20|12|11|02)− 4(21|21|20|11|02)− 2(21|20|20|12|02)− 4(21|20|12|11|11)

(21|20|11|11|03) −2(30|20|11|11|03)− 4(21|20|20|11|03)− 6(21|20|12|11|11)

(21|12|11|11|11) −2(30|12|11|11|11)− 4(21|21|11|11|11)− 6(21|20|12|11|11)

(20|20|20|03|03) −12(20|20|20|12|03)

(20|20|12|12|02) −8(21|20|20|12|02)− 4(20|20|12|12|11)

(20|20|12|11|03) −4(21|20|20|11|03)− 2(20|20|20|12|03)− 6(20|20|12|12|11)

(20|12|12|11|11) −8(21|20|12|11|11)− 4(20|20|12|12|11)

Table 3: Contributions from [Cβ, 20] = 0.
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The final results are shown in Table 3. Collecting similar terms and ordering from the greatest

to the lowest Weyl-ordered product (according to their indices), we arrive to the following

conditions for the coefficients βi:

(30|30|11|02|02) : 12β1 + 2β2 = 0 (3.11)

(30|21|20|02|02) : 2β2 + 4β3 + 4β7 = 0 (3.12)

(30|21|11|11|02) : 8β2 + 4β5 + 4β8 = 0 (3.13)

(30|20|20|03|02) : 2β4 + 2β9 = 0 (3.14)

(30|20|12|11|02) : 8β3 + 6β4 + 4β5 + 2β10 = 0 (3.15)

(30|20|11|11|03) : 4β4 + 6β6 + 2β11 = 0 (3.16)

(30|12|11|11|11) : 4β5 + 6β6 + 2β12 = 0 (3.17)

(21|21|20|11|02) : 8β7 + 4β8 + 4β10 = 0 (3.18)

(21|21|11|11|11) : 4β8 + 4β12 = 0 (3.19)

(21|20|20|12|02) : 6β9 + 2β10 + 8β14 = 0 (3.20)

(21|20|20|11|03) : 4β9 + 4β11 + 4β15 = 0 (3.21)

(21|20|12|11|11) : 4β10 + 6β11 + 6β12 + 8β16 = 0 (3.22)

(20|20|20|12|03) : 12β13 + 2β15 = 0 (3.23)

(20|20|12|12|11) : 4β14 + 6β15 + 4β16 = 0 (3.24)

After losing the system of equations, the solution can be parametrized in the following form:

β = β1

�

1, −6, 0, 0, 6, −2, 3, 6, 0, −12, 6, −6, 1, 3, −6, 6
�T

+

β2

�

0, 0, 1, −1, −1, 1, −1, 1, 1, 1, −1, −1, 0, −1, 0, 1
�T

. (3.25)

The procedure is exactly the same for the sectors Cα, Cγ, Cδ, C� und Cζ . The tables 4 to 8

summarize the results after taking commutator with B20.

(A|B|C|D|E|F ) ∈ Cα i−1 [(A|B|C|D|E|F ), 20]

(20|20|20|02|02|02) −12(20|20|20|11|02|02)

(20|20|11|11|02|02) −4(20|20|20|11|02|02)− 8(20|20|11|11|11|02)

(20|11|11|11|11|02) −8(20|20|11|11|11|02)− 4(20|11|11|11|11|11)

(11|11|11|11|11|11) −12(20|11|11|11|11|11)

Table 4: Contributions from [Cα, 20] = 0.
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(A|B|C|D) ∈ Cγ i−1 [(A|B|C|D), 20]

(30|30|03|03) −12i(30|30|12|03)

(30|21|12|03) −2i(30|30|12|03)− 4i(30|21|21|03)− 6i(30|21|12|12)

(30|12|12|12) −12i(30|21|12|12)

(21|21|21|03) −6i(30|21|21|03)− 6i(21|21|21|12)

(21|21|12|12) −4i(30|21|12|12)− 8i(21|21|21|12)

Table 5: Contributions from [Cγ, 20] = 0.

(A|B|C|D) ∈ Cδ i−1 [(A|B|C|D), 20]

(20|20|02|02) −8(20|20|11|02)

(20|11|11|02) −4(20|20|11|02)− 4(20|11|11|11)

(11|11|11|11) −8i(20|11|11|11)

Table 6: Contributions from [Cδ, 20] = 0.

(A|B|C) ∈ C� i−1 [(A|B|C), 20]

(30|12|02) −4(30|21|02)− 4(30|12|11)

(30|11|03) −2(30|20|03)− 6(30|12|11)

(21|21|02) −4(30|21|02)− 4(21|21|11)

(21|20|03) −2(30|20|03)− 6(21|20|12)

(21|12|11) −2(30|12|11)− 4(21|21|11)− 2(21|20|12)

(20|12|12) −8(21|20|12)

Table 7: Contributions from [C�, 20] = 0.

(A|B) ∈ Cζ i−1 [(A|B), 20]

(20|02) −4i(20|11)

(11|11) −4i(20|11)

Table 8: Contributions from [Cζ , 20] = 0.
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From the calculations, the Casimir Operator takes the form

C = α
�

3 (20|20|11|11|02|02)− (20|20|20|02|02|02)− 3 (20|11|11|11|11|02)+

+ (11|11|11|11|11|11)
�

+

+ [β1] (30|30|02|02|02) + [−6β1] (30|21|11|02|02) + [β2] (30|20|12|02|02) + [−β2] (30|20|11|03|02)+

+ [6β1 − β2] (30|12|11|11|02) + [−2β1 + β2] (30|11|11|11|03) + [3β1 − β2] (21|21|20|02|02)+

+ [6β1 + β2] (21|21|11|11|02) + [β2] (21|20|20|03|02) + [−12β1 + β2] (21|20|12|11|02)+

+ [6β1 − β2] (21|20|11|11|03) + [−6β1 − β2] (21|12|11|11|11) + [β1] (20|20|20|03|03)+

+ [3β1 − β2] (20|20|12|12|02) + [−6β1] (20|20|12|11|03) + [6β1 + β2] (20|12|12|11|11)+

+ γ

�

−
1

6
(30|30|03|03) + (30|21|12|03)−

2

3
(30|12|12|12)−

2

3
(21|21|21|03) +

1

2
(21|21|12|12)

�

+

+ δ
�

(20|20|02|02)− 2 (20|11|11|02) + (11|11|11|11)
�

+

+ �
�

− (30|12|02) + (30|11|03) + (21|21|02)− (21|20|03)− (21|12|11) + (20|12|12)
�

+

+ ζ
�

(20|02)− (11|11)
�

. (3.26)
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3.3 Calculations for [C, B �
30] = 0

The next step is to fix the remaining constants α, β1, β2, γ, δ, � and ζ by imposing [C, B �
30] = 0.

The procedure is exactly the same as in the case for [C, B �
20] = 0, but now additional terms will

appear, which increase the complexity when determining the respective system of equations.

The tables 9 to 14 summarize the results of the calculations:

(A|B|C|D|E|F ) ∈ Cα i−1 [(A|B|C|D|E|F ), 30]

(20|20|20|02|02|02) 18(21|20|20|20|02|02)

(20|20|11|11|02|02) −18(30|20|20|11|02|02)− 36(21|20|20|11|11|02)

(20|11|11|11|11|02) 36(30|20|11|11|11|02) + 18(21|20|11|11|11|11)

(11|11|11|11|11|11) −18(30|11|11|11|11|11)

Table 9: Contributions from [Cα, 30] = 0.

(A|B|C|D) ∈ Cγ i−1 [(A|B|C|D), 30]

−1
6
(30|30|03|03) −3i(1

6
(20|02)|30|30|03) + 3i(1

3
(11|11)|30|30|03) + 4i

3
(30|30|03)

(30|21|12|03)
−3i(1

6
(20|20)|30|12|03)− 6i(1

6
(20|11)|30|21|03) + 9i(1

6
(20|02)|30|21|12)+

−9i(1
3
(11|11)|30|21|12)− 4i(30|21|12)

−2
3
(30|12|12|12) 12i(1

6
(20|11)|30|12|12)

−2
3
(21|21|21|03)

6i(1
6
(20|20)|21|21|03)− 6i(1

6
(20|02)|21|21|21) + 6i(1

3
(11|11)|21|21|21)+

+8i
3
(21|21|21)

1
2
(21|21|12|12) −3i(1

6
(20|20)|21|12|12)− 6i(1

6
(20|11)|21|21|12)

Table 10: Contributions from [Cγ, 30] = 0.

(A|B|C|D) ∈ Cδ i−1 [(A|B|C|D), 30]

(20|20|02|02) −12(21|20|20|02)

−2(20|11|11|02) 12(30|20|11|02) + 12(21|20|11|11)

(11|11|11|11) −12(30|11|11|11)

Table 11: Contributions from [Cδ, 30] = 0.
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(A|B|C|D|E) ∈ Cβ i−1 [(A|B|C|D|E), 30]

(30|30|02|02|02) −18(30|30|21|02|02)

(30|21|11|02|02) −3(16(20|20)|30|11|02|02)− 3(30|30|21|02|02)− 12(30|21|21|11|02)

(30|20|12|02|02) −6(16(20|11)|30|20|02|02)− 12(30|21|20|12|02)

(30|20|11|03|02)

+9(16(20|02)|30|20|11|02)− 9(13(11|11)|30|20|11|02)+

−3(30|30|20|03|02)− 6(30|21|20|11|03)+

−4(30|20|11|02)

(30|12|11|11|02) −6(16(20|11)|30|11|11|02)− 6(30|30|12|11|02)− 6(30|21|12|11|11)

(30|11|11|11|03)
+9(16(20|02)|30|11|11|11)− 9(13(11|11)|30|11|11|11)+

−9(30|30|11|11|03)− 4(30|11|11|11)

(21|21|20|02|02) −6(16(20|20)|21|20|02|02)− 12(21|21|21|20|02)

(21|21|11|11|02) −6(16(20|20)|21|11|11|02)− 6(30|21|21|11|02)− 6(21|21|21|11|11)

(21|20|20|03|02)

−3(16(20|20)|20|20|03|02) + 9(16(20|02)|21|20|20|02)+

−9(13(11|11)|21|20|20|02)− 6(21|21|20|20|03)+

−4(21|20|20|02)

(21|20|12|11|02)
−3(16(20|20)|20|12|11|02)− 6(16(20|11)|21|20|11|02)+

−3(30|21|20|12|02)− 6(21|21|20|12|11)

(21|20|11|11|03)

−3(16(20|20)|20|11|11|03) + 9(16(20|02)|21|20|11|11)+

−9(13(11|11)|21|20|11|11)− 6(30|21|20|11|03)+

−4(21|20|11|11)

(21|12|11|11|11) −3(16(20|20)|12|11|11|11)− 6(16(20|11)|21|11|11|11)− 9(30|21|12|11|11)

(20|20|20|03|03) +18(16(20|02)|20|20|20|03)− 18(13(11|11)|20|20|20|03)− 8(20|20|20|03)

(20|20|12|12|02) −12(16(20|11)|20|20|12|02)− 6(21|20|20|12|12)

(20|20|12|11|03)

−6(16(20|11)|20|20|11|03) + 9(16(20|02)|20|20|12|11)+

−9(13(11|11)|20|20|12|11)− 3(30|20|20|12|03)+

−4(20|20|12|11)

(20|12|12|11|11) −12(16(20|11)|20|12|11|11)− 6(30|20|12|12|11)

Table 12: Contributions from [Cβ, 30] = 0.
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(A|B|C) ∈ C� i−1 [(A|B|C), 30]

(30|12|02) 6(1
6
(20|11)|30|02) + 6(30|21|12)

(30|11|03) 9(1
6
(20|02)|30|11)− 9(1

3
(11|11)|30|11)− 3(30|30|03)− 4(30|11)

(21|21|02) −6(1
6
(20|20)|21|02)− 6(21|21|21)

(21|20|03) 3(1
6
(20|20)|20|03)− 9(1

6
(20|02)|21|20) + 9(1

3
(11|11)|21|20) + 4(21|20)

(21|12|11) 3(1
6
(20|20)|12|11) + 6(1

6
(20|11)|21|11) + 3(30|21|12)

(20|12|12) −12(1
6
(20|11)|20|12)

Table 13: Contributions from [C�, 30] = 0.

(A|B) ∈ Cζ i−1 [(A|B), 30]

(20|02) −6(21|20)

−(11|11) 6(30|11)

Table 14: Contributions from [Cζ , 30] = 0.

3.3.1 Calculations for [C, B�
21] = 0

(A|B|C|D|E|F ) ∈ Cα i−1 [(A|B|C|D|E|F ), 21]

(20|20|20|02|02|02) −6(30|20|20|02|02|02) + 12(20|20|20|12|02|02)

(20|20|11|11|02|02) 12(30|20|11|11|02|02)− 6(21|20|20|11|02|02)− 24(20|20|12|11|11|02)

(20|11|11|11|11|02) −6(30|11|11|11|11|02) + 12(21|20|11|11|11|02) + 12(20|12|11|11|11|11)

(11|11|11|11|11|11) −6(21|11|11|11|11|11)

Table 15: Contributions from [Cα, 21] = 0.
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(A|B|C|D|E) ∈ Cβ i−1 [(A|B|C|D|E), 21]

(30|30|02|02|02) 6(16(20|20)|30|02|02|02)− 12(30|30|12|02|02)

(30|21|11|02|02) 3(16(20|20)|21|11|02|02)− (30|21|21|02|02)− 8(30|21|12|11|02)

(30|20|12|02|02)
3(16(20|20)|20|12|02|02)− (56(20|02)|30|20|02|02) + (13(11|11)|30|20|02|02)+

+2(30|30|12|02|02)− 8(30|20|12|12|02)− 4
3(30|20|02|02)

(30|20|11|03|02)
3(16(20|20)|20|11|03|02)− 6(16(11|02)|30|20|11|02) + 2(30|30|11|03|02)+

−(30|21|20|03|02)− 4(30|20|12|11|03)

(30|12|11|11|02)
3(16(20|20)|12|11|11|02)− (56(20|02)|30|11|11|02) + (13(11|11)|30|11|11|02)+

−2(30|21|12|11|02)− 4(30|12|12|11|11)− 4
3(30|11|11|02)

(30|11|11|11|03) 3(16(20|20)|11|11|11|03)− 6(16(11|02)|30|11|11|11)− 3(30|21|11|11|03)

(21|21|20|02|02) 2(30|21|21|02|02)− 8(21|21|20|12|02)

(21|21|11|11|02) −2(21|21|21|11|02)− 4(21|21|12|11|11)

(21|20|20|03|02) −6(16(11|02)|21|20|20|02) + 4(30|21|20|03|02)− 4(21|20|20|12|03)

(21|20|12|11|02)
−(56(20|02)|21|20|11|02) + (13(11|11)|21|20|11|02) + 2(30|21|12|11|02)+

−(21|21|20|12|02)− 4(21|20|12|12|11)− 4
3(21|20|11|02)

(21|20|11|11|03) −6(16(11|02)|21|20|11|11) + 2(30|21|11|11|03)− 2(21|21|20|11|03)

(21|12|11|11|11)
−(56(20|02)|21|11|11|11) + (13(11|11)|21|11|11|11)− 3(21|21|12|11|11)+

−4
3(21|11|11|11)

(20|20|20|03|03) −12(16(11|02)|20|20|20|03) + 6(30|20|20|03|03)

(20|20|12|12|02)
−2(56(20|02)|20|20|12|02) + 2(13(11|11)|20|20|12|02) + 4(30|20|12|12|02)+

−4(20|20|12|12|12)− 8
3(20|20|12|02)

(20|20|12|11|03)
−(56(20|02)|20|20|11|03) + (13(11|11)|20|20|11|03)− 6(16(11|02)|20|20|12|11)+

+4(30|20|12|11|03)− (21|20|20|12|03)− 4
3(20|20|11|03)

(20|12|12|11|11)
−2(56(20|02)|20|12|11|11) + 2(13(11|11)|20|12|11|11) + 2(30|12|12|11|11)+

−2(21|20|12|12|11)− 8
3(20|12|11|11)

Table 16: Contributions from [Cβ, 21] = 0.
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(A|B|C|D) ∈ Cγ i−1 [(A|B|C|D), 21]

−1
6
(30|30|03|03) −(1

6
(20|20)|30|03|03) + 2(1

6
(11|02)|30|30|03)

(30|21|12|03)
3(1

6
(20|20)|21|12|03)− (5

6
(20|02)|30|21|03) + (1

3
(11|11)|30|21|03)+

−6(1
6
(11|02)|30|21|12)− 4

3
(30|21|03)

−2
3
(30|12|12|12)

−2(1
6
(20|20)|12|12|12) + 2(5

6
(20|02)|30|12|12)− 2(1

3
(11|11)|30|12|12)+

+8
3
(30|12|12)

−2
3
(21|21|21|03) 4(1

6
(11|02)|21|21|21)

1
2
(21|21|12|12) −(5

6
(20|02)|21|21|12) + (1

3
(11|11)|21|21|12)− 4

3
(21|21|12)

Table 17: Contributions from [Cγ, 21] = 0.

(A|B|C|D) ∈ Cδ i−1 [(A|B|C|D), 21]

(20|20|02|02) 4(30|20|02|02)− 8(20|20|12|02)

−2(20|11|11|02) −4(30|11|11|02) + 4(21|20|11|02) + 8(20|12|11|11)

(11|11|11|11) −4(21|11|11|11)

Table 18: Contributions from [Cδ, 21] = 0.

(A|B|C) ∈ C� i−1 [(A|B|C), 21]

(30|12|02)
−(1

6
(20|20)|12|02) + (5

6
(20|02)|30|02)− (1

3
(11|11)|30|02)+

+4(30|12|12) + 4
3
(30|02)

(30|11|03) (1
6
(20|20)|11|03)− 2(1

6
(11|02)|30|11)− (30|21|03)

(21|21|02) −4(21|21|12)

(21|20|03) +2(1
6
(11|02)|21|20)− 2(30|21|03)

(21|12|11)
(5
6
(20|02)|21|11)− (1

3
(11|11)|21|11) + (21|21|12)+

+4
3
(21|11)

(20|12|12)
−2(5

6
(20|02)|20|12) + 2(1

3
(11|11)|20|12)2(30|12|12)+

−8
3
(20|12)

Table 19: Contributions from [C�, 21] = 0.
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(A|B) ∈ Cζ i−1 [(A|B), 21]

(20|02) 2(30|02)− 4(20|12)

−(11|11) 2(21|11)

Table 20: Contributions from [Cζ , 21] = 0.

From the results in the tables 9 to 20 it can be observed the presence of a new type of Weyl-

ordered product, the so-called composed product, because of the level-3 commutators, which

generate a constant term plus a Weyl-ordered product of level-2 operators, e.g.

(30�|22�|11�) = −
1

6
(30�|(20�|02�)|11�) +

1

3
(30�|(11�|11�)|11�)−

13�

9
(30�|11�) . (3.27)

What can be done to handle such products?

* In the work of Isakov and Leinaas [14], they also study a Calogero model with interaction

parameter λ, and starting from the commutator relations (Kij corresponds to our sij

2-particle permutation operator)

[ai, aj] = [a†i , a
†
j] = 0 , (3.28)

[ai, a
†
j] = δij

�

1 + λ
�

i

Kil

�

− λKij , (3.29)

KijKjl = KjlKil = KilKij, i �= j, i �= l, j �= l , (3.30)

KijKmn = KmnKij∀i �= j �= m �= n , (3.31)

Kijaj = aiKij, Kija
†
j = a

†
iKij , (3.32)

they define the operators

L0n =
�

i

ani , (3.33)

Ln0 =
�

i

a
†n
i , (3.34)

and obtain results like our commutator formulae, e.g.

[Lm1, Ln1] = (n−m)Lm+n−1,1 , (3.35)

but they don’t reduce the results from higher level operators to lower level operators, like

this example shows

L31 =
1

2

�

a†3a+ aa†3
�

. (3.36)
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So, applying the definition of the operators Bkl in terms of the position and momenta

coordinates, the composed products could be expanded, and the resulting expressions

should be used for determining a system of equations for the coefficients of the Casimir;

* The second option, which will be used in the next calculations, consists in the reduction

of the composed products into some combination of pure Weyl-ordered products of higher

or lower order. For this purpose, reduction formulae involving double commutators must

be applied, being the general idea behind their derivation explained in the next section.

3.4 Composed Weyl-Products

We proceed to analyze the problem of defining composed (not pure) Weyl-ordered products

in terms of pure ones. Let us start by considering the simplest composed product, namely,

(a|(b|c)); clearly, there is a difference with respect to (a|b|c):

(a|(b|c)) =
1

2
a(b|c) +

1

2
(b|c)a

=
1

4
[abc+ acb+ bca+ cba] , (3.37)

(a|b|c) =
1

6
[abc+ acb+ bac+ bca+ cab+ cba] . (3.38)

The problem now is how to relate both products; in the present work this was achieved by

means of pure algebraic manipulations, and the detailed proof can be found in the appendix

A.6. We only list a few formulae appearing in the calculations from [C, 30] = 0 and [C, 21] = 0:

Ra
bc =

1

12
([[a, b], c] + [[a, c], b]) , (3.39)

(a|(b|c)) = (a|b|c) +Ra
bc , (3.40)

(a|b|(c|d)) = (a|b|c|d) +





(a|Rb
cd)

(b|Ra
cd)



+

�

1

12

�





([a, c]|[b, d])

([a, d]|[b, c])



 , (3.41)

where it is defined




(a|Rb
cd)

(b|Ra
cd)



 := (a|Rb
cd) + (b|Ra

cd) , (3.42)

and not a matrix;
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(a|b|c|(d|e)) = (a|b|c|d|e) +











(a|b|Rc
de)

(a|c|Rb
de)

(b|c|Ra
de)











+

�

1

12

�











(a|[b, d]|[c, e]) + (a|[b, e]|[c, d])

(b|[a, d]|[c, e]) + (b|[a, e]|[c, d])

(c|[a, d]|[b, e]) + (c|[a, e]|[b, d])











+

�

1

30

�











Ra
[b,d][c,e] +Ra

[b,e][c,d]

Rb
[a,d][c,e] +Rb

[a,e][c,d]

Rc
[a,d][b,e] +Rc

[a,e][b,d]











−

�

1

5

�











R
Ra

de

bc

R
Rb

de
ac

R
Rc

de

ab











. (3.43)

Considering the last formulae, it is clear the complexity when calculating the respective con-

tributions, because of the terms containing double commutators, rests Ra
bc and rests from rests

like R
Ra

bc

de . However, the general principle is easy to understand: for a given composed Weyl-

ordered product, e.g. (a|b|c|d|e|(f |g)), there will be a first term, the so-called “leading order

approximation” (a|b|c|d|e|f |g), terms containing double commutators like (a|b|c|[d, f ]|[e, g]) and

permutations, terms with rests (a|b|c|d|Re
fg) plus permutations, etc. To automatize the calcu-

lations a simple MapleTMprogram was written, being the results for each composed product

summarized in the tables 23 to 30 (see Section A.7 in the appendix). Here we just indicate

how the different contributions are related between them by means of diagrams. Black thick

arrows will be used for “normal” or “pure” Weyl-Products like (30|20|12) and leading order

approximations e.g. (30|(20|20)|03) ∼ (30|20|20|03), while color thick arrows will indicate the

contributions from “composed” or “dirty” Weyl-Products using the reduction formulae of the

appendix A.6. The figures 1 and 2 describe the new scenario, for both cases [C, 30�] = 0 and

[C, 21�] = 0. From both figures it is clear, there will be equations connecting different sectors:

* Pure products in Cα and composed terms from Cβ;

* Pure products in Cβ and composed terms from Cγ;

* Contributions relating Cβ, Cδ and C�;

* Pure products in Cα, and contributions of reduced terms from Cβ, Cγ and C�.

What about the dimensions of the coefficients? For example, considering the product (a|(b|c)),

since the rest Ra
bc contains a double commutator, this Weyl-ordered product contains terms up

to order �
2:

(a|(b|c)) = (a|b|c) + �
2Ra

bc . (3.44)
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[Cζ , 30
�] T 2

41

[C�, 30
�] T 2

41 T 3
63 T 4

63

[Cδ, 30
�] T 4

63

[Cγ, 30
�] T 2

41 T 3
63 T 5

85

[Cβ, 30
�] T 2

41 T 4
63 T 5

85 T 6
85

[Cα, 30
�] T 6

85

Figure 1: Mixing diagram for [C, 30�] = 0.

[Cζ , 21
�] T 2

32

[C�, 21
�] T 2

32 T 3
54 T 4

54

[Cδ, 21
�] T 4

54

[Cγ, 21
�] T 2

32 T 3
54 T 5

76

[Cβ, 21
�] T 2

32 T 4
54 T 5

76 T 6
76

[Cα, 21
�] T 6

76

Figure 2: Mixing diagram for [C, 21�] = 0.

Let us analyze one term from [C, 30�] = 0:

[(30�|12�|02�), 30�] = −6i�(31�|30�|02�)− 6i�(30�|21�|12�)

= −i�(30�|20�|11�|02�)− 6i�(30�|21�|12�)−
i�3

3
(30�|11�) . (3.45)

The same analysis shows

(a|b|(c|d)) ∼ 1 + �
2 , (3.46)

(a|b|c|(d|e)) ∼ 1 + �
2 + �

4 , (3.47)
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(a|b|c|d|(e|f)) ∼ 1 + �
2 + �

4 . (3.48)

Then, we confirm what was said in the beginning of this section: The coefficients α, β, γ are

of the same order �
0, and in the limit � → 0, i.e. the classical case, the contributions of those

sectors will remain, not being the case for δ and �, which are of order �2, and for ζ order �4.

After collecting similar terms, applying reduction formulae, reordering, etc. two systems

of equations for the coefficients were determined. For example, in the case [C, 30�] = 0, the

following matrices give account of the equations obtained; the rows correspond to the different

contributions for each Weyl-ordered product (ordering from the greatest to the lowest term, as

seen in Section 3.2), and the columns from left to right denote the coefficients α, β1, β2, γ, δ,

� and ζ, in that order:

* Pure and leading order approximations between α and β1, β2:

A30� =





























































−18 −5
2 3 0 0 0 0

36 11
2 −9 0 0 0 0

−18 −3 6 0 0 0 0

18 5
2 −3 0 0 0 0

−36 −13
2 15 0 0 0 0

18 4 −12 0 0 0 0

0 −1
2 3 0 0 0 0

0 3
2 −9 0 0 0 0

0 1
2 −3 0 0 0 0

0 −3
2 9 0 0 0 0

...





























































. (3.49)

* Mixing between β1, β2, δ, �,











































...

0 15 6 0 −12 −5
2 0

0 −15 −6 0 12 5
2 0

0 −14 96 0 12 4 0

0 44
3 −28 0 −12 −3 0

0 1
3 34 0 0 1

2 0

0 −1 −102 0 0 −3
2 0

...











































, (3.50)
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* Mixing between β1, β2, δ,


































































































...

0 3 0 −1
2 0 0 0

0 −9 18 1 0 0 0

0 0 18 −1
2 0 0 0

0 12 −36 −1 0 0 0

0 −15 36 3
2 0 0 0

0 15 18 −3 0 0 0

0 −6 −36 2 0 0 0

0 −6 0 1 0 0 0

0 12 −36 −1 0 0 0

0 −6 −36 2 0 0 0

0 6 −18 −1
2 0 0 0

0 −6 72 −1 0 0 0

0 0 0 0 0 0 0

0 −6 36 0 0 0 0

0 6 −36 0 0 0 0
...



































































































, (3.51)

* Mixing between the sectors β1, β2, δ, � and ζ:











...

0 −827
45 −904

15 −112
15 0 −38

3 −6

0 0 0 18 0 9 0











, (3.52)

A similar matrix can be written for [C, 21�] = 0; after solving the systems of equations with

MapleTM, we arrive to one of the central results, namely, the values for the constants defining

the free Casimir operator with N = 3 particles:

α = α, β1 = −
3

2
α; β2 = −9α; γ = −54α; δ = −

69

2
α; � = 108α; ζ = −

709

6
α . (3.53)

We can also normalize this result choosing α = 6:

α = 6, β1 = −9; β2 = −54; γ = −324; δ = −207; � = 648; ζ = −709 . (3.54)
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3.5 Classical Limit - Poisson Brackets

A simple test for verifying the last result (3.53) can be done analyzing the classical limit. Ac-

cording to standard texts on classical and quantum mechanics, the relation between commutator

and Poisson-bracket is

{A,B} =
N
�

i=1

∂A

∂xi

∂B

∂pi
−

∂A

∂pi

∂B

∂xi

, (3.55)

i−1

�
[A,B] → {A,B} . (3.56)

In the classical case, since � tends to zero, all operators commute between themselves, and all

terms of order � or higher disappear. Then, the old commutators in Table 2 reduce to the

following one:

{Bkl, Bmn} B�
20 B�

02 B�
11 B�

30 B�
21 B�

12 B�
03

B�
20 0 4B�

11 2B�
20 0 2B�

30 4B�
21 6B�

12

B�
02 −4B�

11 0 −2B�
02 −6B�

21 −4B�
12 −2B�

03 0

B�
11 −2B�

20 2B�
02 0 −3B�

30 −B�
21 B�

12 3B�
03

B�
30 0 6B�

21 3B�
30 0 3B�

40 6B�
31 9B�

22

B�
21 −2B�

30 4B�
12 B�

21 −3B�
40 0 3B�

22 6B�
13

B�
12 −4B21 2B�

03 −B�
12 −6B�

31 −3B�
22 0 3B�

04

B�
03 −6B�

12 0 −3B�
03 −9B�

22 −6B�
13 −3B�

04 0

Table 21: Poisson brackets between operators.

Since there are no terms of order � or higher, the mixing between different sectors does not

occur. The new behavior of the system can be described as follows:

* There will be equations relating terms from α and β1, β2;

* A second set will combine β1 and β2 and γ;

* A third set of equations in the same sector;

* Equations associated to δ, �, ζ are all of the form

δ · x = 0, x ∈ R , (3.57)

� · y = 0, y ∈ R , (3.58)

ζ · z = 0, z ∈ R , (3.59)
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whose solutions are

δ = � = ζ = 0 . (3.60)

Proceeding exactly like in the general case, i.e. calculating {C, 30�} = 0, expanding, collecting

terms, etc., the results after solving the respective system of equations show us, that only the

sectors Cα, Cβ, Cγ contribute to the classical Casimir Operator:

α = α , β1 = −
3

2
α; β2 = −9α; γ = −54α; δ = 0; � = 0; ζ = 0 , (3.61)

again scaling to α = 6:

α = 6 , β1 = −9; β2 = −54; γ = −324; δ = 0; � = 0; ζ = 0 . (3.62)

For the last result we can state: In the quantum case, the ground commutators can have

contributions of order � or �
2, due to this fact the commutator with the Casimir operator

exhibits terms of order �
3 (sectors β and γ) and �

5 (sector α). In the classical case, the

commutator is replaced by the Poisson bracket, all operators commute between themselves,

and there are no contributions beyond order � in the ground brackets. Then, the only surviving

contributions to the classical Casimir operator will come from the sectors α, β and γ, and all

the other terms will vanish, which is consistent with the algebraic result (3.61).
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Thus, having found a full Casimir operator in its free version for both classical and quantum

case, with COM and total momentum decoupled,

C = α
�

3
�

20�|20�|11�|11�|02�|02�
�

−
�

20�|20�|20�|02�|02�|02�
�

− 3
�

20�|11�|11�|11�|11�|02�
�

+

+
�

11�|11�|11�|11�|11�|11�
�

�

+

+ β
�

(30�|30�|02�|02�|02�)− 6(30�|21�|11�|02�|02�) + 6(30�|20�|12�|02�|02�)− 6(30�|20�|11�|03�|02�) +

+ 4(30�|11�|11�|11�|03�)− 3(21�|21�|20�|02�|02�) + 12�(21�|21�|11�|11�|02�) + 6(21�|20�|20�|03�|02�)+

− 6(21�|20�|12�|11�|02�)− 12�(21�|12�|11�|11�|11�) + (20�|20�|20�|03�|03�)− 3(20�|20�|12�|12�|02�)+

− 6(20�|20�|12�|11�|03�) + 12�(20�|12�|12�|11�|11�)
�

+

+ γ

�

−
1

6

�

30�|30�|03�|03�
�

+
�

30�|21�|12�|03�
�

−
2

3

�

30�|12�|12�|12�
�

−
2

3

�

21�|21�|21�|03�
�

+

+
1

2

�

21�|21�|12�|12�
�

�

+

+ δ
�

�

20�|20�|02�|02�
�

− 2
�

20�|11�|11�|02�
�

+
�

11�|11�|11�|11�
�

�

+

+ �
�

−
�

30�|12�|02�
�

+
�

30�|11�|03�
�

+
�

21�|21�|02�
�

−
�

21�|20�|03�
�

−
�

21�|12�|11�
�

+

+
�

20�|12�|12�
�

�

+

+ ζ
�

�

20�|02�
�

−
�

11�|11�
�

�

, (3.63)

being the coefficients (normalized to α = 6 and β2 = 6β1 =: 6β)

α = 6; β1 = −9; β2 = −54; γ = −324; δ = −207; � := 648; ζ = −709 , (3.64)

we can turn our attention to the problem with interaction g in the Hamiltonian; this task will

be developed in the next section.
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3.6 Casimir Operator - Interaction Case

Up to now the interaction was absent in the required equations for getting the free Casimir

operator. In the last section we have found an operator, and the next logical step is to switch

on the interaction g in our problem, that is to say, the full Hamiltonian has to be considered

[1, 2]:

H =
1

2

�

i

p2i +
�

i<j

g(g − 1)

(xi − xj)2
. (3.65)

The main change concerns to the definition of the Bkl-operators:

pk → πk; Bkl → B̃kl = res

�

1

2

3
�

µ=1

�

xk
µπ

l
µ + πl

µx
k
µ

�

�

. (3.66)

How do we proceed? In a similar way to the previous case, by finding the new commutator

relations, then decoupling the center-of-mass and finally solving a system of equations for the

modified constants α, β, γ, δ, �1, �2 and ζ.

In what follows, the operators will act on completely symmetric functions under exchange of

two particles [1]. Taking this into account, the definitions for Bkl with interaction are the

following ones:

B̃10 = B10 , (3.67)

B̃01 = B01 , (3.68)

B̃20 = B20 , (3.69)

B̃02 = B02 + 2g(g − 1)
�

k<l

1

x2
kl

, (3.70)

B̃11 = B11 , (3.71)

B̃30 = B30 , (3.72)

B̃21 = B21 , (3.73)

B̃12 = B12 + g(g − 1)
�

k<l

xk + xl

x2
kl

, (3.74)

B̃03 = B03 + 3g(g − 1)
�

k<l

pk + pl

x2
kl

, (3.75)

being xkl = xk − xl, as usual. The notation applied here reads: Bkl is a free operator, while

B̃kl includes the interaction, but B̃�
kl includes interaction and COM was decoupled using the

transformations (2.71), (2.72) and (2.73) seen in Section 2.4.

From the last equations it can be seen, only the operators B̃02, B̃12, B̃03 are modified. The next

step is to calculate the commutators with those modified operators, to see how the free-case

algebra is changed. Here we concentrate, as usual, on the most important commutators, namely
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�

3̃0, 0̃3
�

and
�

2̃1, 1̃2
�

, because they will produce constant terms (order �3) which contribute to

the sector mixing, either as a direct result or included in the expansions for composed Weyl-

ordered products:

i−1
�

3̃0, 0̃3
�

= 9(22) + 9 + 9g(g − 1)
�

a<b

x2
a + x2

b

x2
ab

, (3.76)

ı−1[2̃1, 1̃2] = 3(22) + 6 + g(g − 1)
�

a<b

x2
a + 4xaxb + x2

b

x2
ab

. (3.77)

After some straightforward but cumbersome calculations, e.g., when expressing B22 in terms of

the B̃kl operators and applying the transformation which decouples COM, the final expression

for the commutator [3̃0
�
, 0̃3

�
] reads

�

3̃0
�
, 0̃3

�
�

= −
3

2

�

2̃0
�
|0̃2

�
�

+ 3(1̃1
�
|1̃1

�
)− 4 + 9g(g − 1) , (3.78)

and similarly for [2̃1
�
, 1̃2

�
]

�

2̃1
�
, 1̃2

�
�

=
5

6

�

2̃0
�
|0̃2

�
�

−
1

3
(1̃1

�
|1̃1

�
) +

4

3
− 3g(g − 1) , (3.79)

where the detailed steps for deriving (3.78) are indicated in the Section A.8 of the appendix.

For the rest of the commutators, the Table 22 summarizes the new results; there we denote by

W := g(g− 1) the contribution due to the interaction coupling g. Clearly, the only change due

to the presence of the interaction has to do with the addition of a constant term proportional

to g(g−1) in the commutators (3.78) and (3.80); in all other cases the commutators (also, their

structure constants) remain unchanged, no doubt a quite remarkable effect which will simplify

later the calculations.
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i−1[Bkl, Bmn] (2̃0
�

) (0̃2
�

) (1̃1
�

) (3̃0
�

) (2̃1
�

) (1̃2
�

) (0̃3
�

)

(2̃0
�

) 0 4(1̃1
�

) 2(2̃0
�

) 0 2(3̃0
�

) 4(2̃1
�

) 6(1̃2
�

)

(0̃2
�

) −4(1̃1
�

) 0 −2(0̃2
�

) −6(2̃1
�

) −4(1̃2
�

) −2(0̃3
�

) 0

(1̃1
�

) −2(2̃0
�

) 2(0̃2
�

) 0 −3(3̃0
�

) −(21)� (1̃2
�

) 3(0̃3
�

)

(3̃0
�

) 0 6(2̃1
�

) 3(3̃0
�

) 0
1

2
(2̃0

�

|2̃0
�

) (2̃0
�

|1̃1
�

)

−
3

2
(2̃0

�

|0̃2
�

)

+3(1̃1
�

|1̃1
�

)

−4 + 9W

(2̃1
�

) −2(3̃0
�

) 4(1̃2
�

) (2̃1
�

) −
1

2
(2̃0

�

|2̃0
�

) 0

+
5

6
(2̃0

�

|0̃2
�

)

−
1

3
(1̃1

�

|1̃1
�

)

+
4

3
− 3W

(1̃1
�

|0̃2
�

)

(1̃2
�

) −4(2̃1
�

) 2(0̃3
�

) −(1̃2
�

) −(2̃0
�

|1̃1
�

)

−
5

6
(2̃0

�

|0̃2
�

)

+
1

3
(1̃1

�

|1̃1
�

)

−
4

3
+ 3W

0
1

2
(0̃2

�

|0̃2
�

)

(0̃3
�

) −6(1̃2
�

) 0 −3(0̃3
�

)

+
3

2
(2̃0

�

|0̃2
�

)

−3(1̃1
�

|1̃1
�

)

+4− 9W

−(1̃1
�

|0̃2
�

) −
1

2
(0̃2

�

|0̃2
�

) 0

Table 22: Commutators with interaction and COM-decoupling.

It is necessary to emphasize the philosophy behind those algebraic calculations:

* Pure commutation relations [B̃kl, B̃mn] were determined, including COM-terms; the re-

sults coincide with the free case, the only difference appearing in the commutators between

level-3 operators, where there are terms proportional to the interaction coupling g;

* As a second step, applying the transformation that decouples COM and total momentum

operators, the commutators are recalculated. The results only differ from the free case in

[3̃0
�
, 0̃3

�
] and [2̃1

�
, 1̃2

�
] by adding a constant depending on the interaction coupling in the

form g(g − 1);

* Consequently, the calculations for [C̃ �, 3̃0
�
] = 0 and [C̃ �, 2̃1

�
] = 0 must be modified, and a

new system of equations is obtained for α, . . . , ζ. Since the change affects commutators

with terms of order �3 and �
5, i.e. the composed Weyl-ordered products, the new system

should only change in the equations mixing β1, β2, γ, δ, � and ζ.
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We have already seen (Section 3.5) that the sectors α, β, γ don’t vanish in the classical free

case, and quantum effects are associated to the δ−, �−, and ζ− sectors. Then, it is reasonable

to obtain equations for those quantum sectors where the interaction explicitly appears, while

the equations for the classical sector α, β and γ don’t experience any changes. The following

matrix summarize the modifications due to the presence of the interaction g:

A3̃0,g · �X = �0 , (3.80)

�X =
�

α, β1, β2, γ, δ, �, ζ

�T

(3.81)

A3̃0,g =

















































...

0 827
45

904
15

112
15 0 38

3 − 9W 6

0 0 0 18− 9W 0 9 0

0 15− 9W 6 0 −12 −5
2 0

0 −15 + 9W −6 0 12 5
2 0

0 −14 + 9W 96− 54W 0 12 4 0

0 44
3 − 9W −28 + 18W 0 −12 −3 0

0 1
3 34− 18W 0 0 1

2 0

0 −1 −102 + 54W 0 0 −3
2 0

















































(3.82)

A similar matrix is obtained from [C, 2̃1
�
]:

A2̃1,g =























































...

0 827
135

904
45

112
45 0 38

9 − 3W 2

0 0 0 2−W 0 1 0

0 −5 + 3W −2 0 4 5
6 0

0 29
3 − 6W −30 + 18W 0 −8 −13

6 0

0 14
3 − 3W −32 + 18W 0 −4 −4

3 0

0 −13
3 + 3W 66− 36W 0 4 11

6 0

0 −32
3 + 6W −72 + 36W 0 8 2

3 0

0 16
3 − 3W 36− 18W 0 −4 −1

3 0

0 1
3 34− 18W 0 0 1

2 0























































(3.83)
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When solving the overdetermined system of equations, in both cases, there is a solution for

the new coefficients depending again on one real parameter α; their values normalized to α = 6

are

α = 6 , (3.84)

β1 = −9 , (3.85)

β2 = −54 , (3.86)

γ = −324 , (3.87)

δ = −207 + 108g(g − 1) , (3.88)

� = 648− 324g(g − 1) , (3.89)

ζ = −709 + 1656g(g − 1)− 486g2(g − 1)2 . (3.90)

Since the coefficients α, β := β1 and γ contain the terms which survive in the classical limit,

they are not affected by the presence of the interaction, the values being identical with those

found in the free case. The quantum effects are present in the sectors δ, �, ζ, and by this reason

their modification is a natural consequence of the interaction g; in comparison to the free case,

their old values are shifted by a multiple of the factor g(g − 1), and clearly one recovers the

free case not only when g = 0, but also with g = 1.

With this last result our original task is finally complete: A Casimir operator for the

Calogero model with N = 3 particles for both quantum and classical cases has been found

and expressed in terms of a basis of operators satisfying a W3-algebra and applying Weyl

ordering between those operators.
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4 Conclusions

In the present work a Casimir operator for the Calogero model with three particles, and inter-

action potential inversely proportional to the square of the distance between two particles, has

been found for the free and interaction cases (both quantum and classical). By construction,

this Casimir operator is symmetric under particle permutations, and it is expressed in terms

of operators satisfying a W3-algebra; additionally, for the given set of basis operators a trans-

formation was determined, so that the center-of-mass and total momentum of the system are

decoupled, i.e. they do not appear explicitly in the expression for the Casimir operator.

After decoupling COM and total momentum, the case N = 2 particles is fully described by

the usual sl(2)-algebra, and there is only one Casimir operator . However, with N = 3 particles

the commutation relations experience important modifications, namely, there is a subalgebra

sl(2) determined by the level-2 operators B20, B02 and B11, represented in the Casimir operator

by the sectors Cα, Cδ and Cζ (this last one being the proper Casimir for sl(2)), which does not

depend explicitly on the interaction g; and the level-3 operators B30, B21, B12, B03 present

in the sectors Cβ, Cγ and C� generate non-linear products of level-2 operators (order �) plus

a constant term of order �
2 proportional to the identity (central extension), being explicitly

included in this term the interaction as an additive constant of the form g(g − 1).

A key role played the introduction of the so-called Weyl ordering of operators, with its help a

simple and compact form for the Casimir operator as for the COM-decoupling transformations

could be written. From the technical point of view, those Weyl-ordered products, although

manifestly symmetric, can be very complex, especially when calculating with composed or

non-pure products, and special formulae were derived for dealing with them.

Finally, there are important topics which must be considered in a future work:

* To get a better understanding of the role that group representation theory plays in defining

the general structure of the algebra satisfied by the operators Bkl. Here we only focused

on the commutators and their behavior in presence of the interaction coupling, but it

is possible to apply a line of argumentation similar to [14], for example, by using the

adjoint representation for the operators Bkl. This is also related to one more fundamental

question: Is there any other Casimir operator for the case studied here? If yes, how many?

* Searching for general algorithms or combinatorial techniques for calculating composed

Weyl-products in terms of pure ones; this will be extremely beneficial when applying the

method here developed to problems with more than three bodies.
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* Extension of the procedure to an arbitrary number N of particles. This can be optimized,

as mentioned above, with the help of representation theory and proved techniques for Weyl

ordering.

* Study of one simple three-body-problem in a scattering case and apply the formalism to

perturbation theory.

The most important technical lesson, after all the algebraic work, relates to the necessity of

developing standard programs or routines with some CAS (e.g. MathematicaTMor MapleTM);

this will be extremely helpful in the study of problems with a large number of particles, espe-

cially if the operators satisfy a WN -algebra and we work with Weyl ordering, like it was in the

present case.
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A Appendix

A.1 How to get a formula for [Bkl, Bmn]?

In the Section 2.2 it was mentioned the convenience of a general formula for evaluate [Bkl, Bmn].

Here we show the necessary procedure for getting a useful expression up to order k+m− 3; l+

n − 3, good enough when considering the basis operators B10, . . . , B03. Extensions to higher

order are required only from N = 5 onwards, but from the operational point of view it is the

same.

Let us begin remembering the typical commutator formulae from Quantum Mechanics [11]:

[A,BC] = [A,B]C + B[A,C] , (A.1)

[AB,C] = A[B,C] + [A,C]B . (A.2)

Knowing that (� = 1)

[x, p] = i , (A.3)

it is easy to find

[xj, p] = ijxj−1 (A.4)

and

[x, pk] = ikpk−1 . (A.5)

To simplify the algebraic calculations, we use formally

∂

∂p

�

xj, pk
�

= k
�

xjpk−1 − pk−1xj
�

= k[xj, pk−1] . (A.6)

Having determined the value of [xj, pm] we can apply the last equation (A.6), and by integration

(observing the given order in p and x!!) one finds the formulae (easy to prove by means of

induction)

[xj, pk] =
k
�

µ=1

�

k

µ

�

iµj!

(j − µ)!
pk−µxj−µ , (A.7)

[xj, pk] =

j
�

µ=1

�

j

µ

�

(−1)µ+1iµk!

(k − µ)!
xj−µpk−µ . (A.8)

The full expression to be calculated (see Section 2.2) looks like this:

[Bkl, Bmn] =
1

4

N
�

α=1

N
�

β=1

�

xk
αp

l
α + plαx

k
α, x

m
β p

n
β + pnβx

m
β

�

. (A.9)
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Applying the formulae (A.1) and (A.2) for [A,BC] and [AB,C] we get:

[Bkl, Bmn] =
1

4

N
�

α=1

N
�

β=1

�

−xk
α

�

xm
β , p

l
α

�

pnβ + xm
β

�

xk
α, p

n
β

�

plα +

− xk
αp

n
β

�

xm
β , p

l
α

�

+
�

xk
α, p

n
β

�

xm
β p

l
α + plαx

m
β

�

xk
α, p

n
β

�

−
�

xm
β , p

l
α

�

pnβx
k
α +

+ plα
�

xk
α, p

n
β

�

xm
β − pnβ

�

xm
β , p

l
α

�

xk
α

�

. (A.10)

Since
�

xk
α, p

n
β

�

= δαβ
�

xk
β, p

n
β

�

, (A.11)

we finally obtain

[Bkl, Bmn] =
1

4

N
�

β=1

�

−xk
β

�

xm
β , p

l
β

�

pnβ + xm
β

�

xk
β, p

n
β

�

plβ +

− xk
βp

n
β

�

xm
β , p

l
β

�

+
�

xk
β, p

n
β

�

xm
β p

l
β + plβx

m
β

�

xk
β, p

n
β

�

−
�

xm
β , p

l
β

�

pnβx
k
β +

+ plβ
�

xk
β, p

n
β

�

xm
β − pnβ

�

xm
β , p

l
β

�

xk
β

�

. (A.12)

Up to now we have applied some formal identities and the algebra is still reasonable. In the

next steps one must expand the commutators, but up to which order? The answer will depend

on the number of particles in the system. For example, with N = 3 we should approximate

[xj, pk] ≈ ijkxj−1pk−1 −
i2

2!
j(j − 1)k(k − 1)xj−2pk−2+

+
i3

3!
j(j − 1)(j − 2)k(k − 1)(k − 2)xj−3pk−3 + . . . , (A.13)

and, very important, the chosen order must be strictly observed and equally applied in all the

commutators. After some lengthy and cumbersome calculations, the expression found is:

�

Bkl, Bmn

�

= iC1
klmnBk+m−1;l+n−1 + iC3

klmnBk+m−3;l+n−3 + O (Bk+m−5;l+n−5) . (A.14)

The first factor C1
klmn is given by

C1
klmn = kn− lm , (A.15)

while the second coefficient C3
klmn has the form

C3
klmn =

1

12

�

k(k − 1)n(n− 1) [(k − 2 + 3m)(n− 2 + 3l)− 3lm] +

l(l − 1)m(m− 1) [(l − 2 + 3n)(m− 2 + 3k)− 3kn]
�

. (A.16)
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How can be verified the result (A.14)? Let us begin with a direct calculation of [B12, B34]:

[B12, B34] =
1

4

N
�

α=1

N
�

β=1

�

x1
αp

2
α + p2αx

1
α, x

3
βp

4
β + p4βx

3
β

�

=

=
1

4

N
�

β=1

�

−x1
β

�

x3
β, p

2
β

�

p4β + x3
β

�

x1
β, p

4
β

�

p2β +

− x1
βp

4
β

�

x3
β, p

2
β

�

+
�

x1
β, p

4
β

�

x3
βp

2
β + p2βx

3
β

�

x1
β, p

4
β

�

−
�

x3
β, p

2
β

�

p4βx
1
β +

+ p2β
�

x1
β, p

4
β

�

x3
β − p4β

�

x3
β, p

2
β

�

x1
β

�

. (A.17)

In the following we can neglect the subindex β. Let us define

−A := x
�

x3, p2
�

p4 + xp4
�

x3, p2
�

+
�

x3, p2
�

p4x+ p4
�

x3, p2
�

x , (A.18)

B := x3
�

x, p4
�

p2 +
�

x, p4
�

x3p2 + p2x3
�

x, p4
�

+ p2
�

x, p4
�

x3 , (A.19)

and with the help of the results

�

xj, p2
�

= ij
�

xj−1p+ pxj−1
�

=: ij
�

xj−1, p
�

, (A.20)

�

x2, pk
�

= kj
�

xpk−1 + pk−1x
�

=: ik
�

x, pk−1
�

. (A.21)

a) Calculations for A. In this case, from the formula (A.21)

�

x3, p2
�

= 3i
�

x2p+ px2
�

, (A.22)

the expression to be simplified reads

− A = 3i
�

x3p5 + xpx2p4 + xp4x2p+ xp5x2 + x2p5x+ px2p4x+ p4x2px+ p5x3
�

...

= 3i
�

4
�

x3, p5
�

− 2ix2p4 − x
�

x2, p4
�

p+ 5ip4x2 − 5ix2p4 + p
�

x2, p4
�

x+ 2ip4x2
�

...

= 3i
�

4
�

x3, p5
�

− 28i2
�

x, p3
�

− x
�

x2, p4
�

p+ p
�

x2, p4
�

x
�

...

= 3i
�

4
�

x3, p5
�

− 28i2
�

x, p3
�

− 8i
�

x2, p4
�

+ 12i2
�

x, p3
��

...

=⇒ A = −12i
�

x3, p5
�

+ 144i3
�

x, p3
�

. (A.23)

b) Calculations for B. Remembering that

�

x, pk
�

= ikpk−1 (A.24)
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we get
�

x, p4
�

= 4ip3 , (A.25)

=⇒ −B = 4i
�

x3p5 + p3x3p2 + p2x3p3 + p5x3
�

= 4i
�

2
�

x3, p5
�

+ p3
�

x3, p2
�

−
�

x3, p2
�

p3
�

(A.20) → = 4i
�

2
�

x3, p5
�

+ 3ip3x2p+ 3ip4x2 − 3ix2p4 − 3ipx2p3
�

...

= 4i
�

2
�

x3, p5
�

+ 6i2p3xp+ 6ip4x2 − 6ix2p4 + 6i2xp3
�

= 4i
�

2
�

x3, p5
�

+ 6i2
�

x, p3
�

− 6i
�

x2, p4
��

= 4i
�

2
�

x3, p5
�

+ 6i2
�

x, p3
�

− 24i2
�

x, p3
��

= 8i
�

x3, p5
�

− 72i3
�

x, p3
�

. (A.26)

Then, adding the expressions for A and B:

A+ B = −4i
�

x3, p5
�

+ 144i3
�

x, p3
�

, (A.27)

∴ [B12, B34] =
1

4

N
�

β=1

�

−4i
�

x3
β, p

5
β

�

+ 72i3
�

xβ, p
3
β

��

= −2iB35 − 36iB13 . (A.28)

Applying formulae:

C1
1234 = 1 · 4− 2 · 3 = −2 , (A.29)

C3
1234 =

1

12
[−2 · (2− 1) · 3 · (3− 1) · [(2− 2 + 3 · 4) · (3− 2 + 3 · 1)− 3 · 1 · 4]

= −
432

12
= −36 , (A.30)

(A.14) =⇒ [B12, B34] = −2iB35 − 36iB13 . (A.31)

Repeating the direct procedure for [B14, B23]:

[B14, B23] =
1

4

N
�

α=1

N
�

β=1

�

x1
αp

4
α + p4αx

1
α, x

2
βp

3
β + p3βx

2
β

�

=

=
1

4

N
�

β=1

�

−xβ

�

x2
β, p

4
β

�

p3β + x2
β

�

xβ, p
3
β

�

p4β +

− xβp
3
β

�

x2
β, p

4
β

�

+
�

xβ, p
3
β

�

x2
βp

4
β + p4βx

2
β

�

xβ, p
3
β

�

−
�

x2
β, p

4
β

�

p3βxβ +

+ p4β
�

xβ, p
3
β

�

x2
β − p3β

�

x2
β, p

4
β

�

xβ

�

, (A.32)
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−A := x
�

x2, p4
�

p3 + xp3
�

x2, p4
�

+
�

x2, p4
�

p3x+ p3
�

x2, p4
�

x , (A.33)

B := x2
�

x, p3
�

p4 +
�

x, p3
�

x2p4 + p4x2
�

x, p3
�

+ p4
�

x, p3
�

x2 . (A.34)

After the algebra one gets:

A = −16i
�

x2, p6
�

+ 240i3p4 , (A.35)

B = 6i
�

x2, p6
�

− 48i3p4 , (A.36)

A+ B =⇒ [B14, B23] =
1

4

N
�

β=1

�

−10i
�

x2
β, p

6
β

�

− 192ip4β
�

= −5iB26 − 48iB04 . (A.37)

Now using the formulae

C1
1423 = 1 · 3− 4 · 2 = −5 , (A.38)

C3
1423 =

1

12
[1 · (1− 1) · 3 · (3− 1) · [(1− 2 + 3 · 2) · (3− 2 + 3 · 4)− 3 · 4 · 2]

− 4 · (4− 1) · 2 · (2− 1) · [(4− 2 + 3 · 3) · (2− 2 + 3 · 1)− 3 · 1 · 3] = −
576

12
= −48 . (A.39)

=⇒ [B14, B23] = −5iB26 − 48iB04 . (A.40)

One last example for verifying the formulae (A.14), (A.15) and (A.16):

[B15, B24] =
1

4

N
�

α=1

N
�

β=1

�

x1
αp

5
α + p5αx

1
α, x

2
βp

4
β + p4βx

2
β

�

=

=
1

4

N
�

β=1

�

−xβ

�

x2
β, p

5
β

�

p4β + x2
β

�

xβ, p
4
β

�

p5β +

− xβp
4
β

�

x2
β, p

5
β

�

+
�

xβ, p
4
β

�

x2
βp

5
β + p5βx

2
β

�

xβ, p
4
β

�

−
�

x2
β, p

5
β

�

p4βxβ +

+ p5β
�

xβ, p
4
β

�

x2
β − p4β

�

x2
β, p

5
β

�

xβ

�

, (A.41)

−A := x
�

x2, p5
�

p4 + xp4
�

x2, p5
�

+
�

x2, p5
�

p4x+ p4
�

x2, p5
�

x , (A.42)

B := x2
�

x, p4
�

p5 +
�

x, p4
�

x2p5 + p5x2
�

x, p4
�

+ p5
�

x, p4
�

x2 . (A.43)

As a result of the algebra we get:

A = −20i
�

x2, p8
�

+ 560i3p6 , (A.44)

B = 8i
�

x2, p8
�

− 120i3p6 , (A.45)

A+ B =⇒ [B15, B24] =
1

4

N
�

β=1

�

−12i
�

x2
β, p

8
β

�

− 440ip6β
�

= −6iB28 − 110iB06 =⇒ C3
1524 = −110 . (A.46)
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Now using the formula (A.14), (A.15) and (A.16):

C1
1524 = 1 · 4− 5 · 2 = −6 , (A.47)

C3
1524 =

1

12
[1 · (1− 1) · 4 · (4− 1)[(1− 2 + 3 · 2) · (4− 2 + 3 · 5)− 3 · 5 · 2]

− 5 · (5− 1) · 2 · (2− 1) · [(5− 2 + 3 · 4) · (2− 2 + 3 · 1)− 3 · 1 · 4]] = −
1320

12
= −110 (A.48)

(A.14) =⇒ [B15, B24] = −6iB28 − 110iB06 . (A.49)

We repeat one more time: the present work aims to find a Casimir operator in the context of

Calogero models, with the help of the Bkl operators. Since the existence of a Casimir requires

the vanishing of its commutator with the rest of operators, we have two possibilities when

defining a basis of operators for the case N = 3:

* Either we calculate directly each required commutator, by expanding, collecting terms,

etc;

* or we determine a general expression for the commutator [Bkl, Bmn], good enough when

dealing with operators Bkl, k + l ≤ N = 3.

Clearly, the second option suits better to our present needs, especially when it minimizes the

rapidly increasing length of the algebraic calculations.
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A.2 Dunkl Operators πk

We prove an important property of the Dunkl operators associated to the Calogero Model with

Hamiltonian given by

H =
1

2

�

α

p2α +
�

α<β

g(g − 1)

(xα − xβ)
2 . (A.50)

Their definition is

πα = pα + i
�

µ( �=α)

g

xα − xµ
sαµ, for α, µ = 1 . . . N , (A.51)

or in terms of derivatives:

Dα = ∂α −
�

µ( �=α)

g

xα − xµ
sαµ . (A.52)

“sαν” is the 2-particle exchange operator with the following properties ([1, 2]):

sab = (sab)
−1 = s

†
ab = sba , (A.53)

[sab, scd] = 0, a �= b �= c �= d , (A.54)

sabsbc = sacsab, a �= b �= c . (A.55)

Those operators act on the space of all symmetric functions under exchange of two particles

[1]. In that case, they satisfy the important result

[πa, πb] = 0, ∀a, b = 1 . . . N , (A.56)

which will be proved by direct calculation. Let us start by defining

xab := xa − xb . (A.57)

Clearly

pµ
�

x−n
ab

�

= i · n (δaµ − δbµ) x
−n−1
ab , (A.58)

�

pµ, x
−1
ab

�

= i (δaµ − δbµ) x
−2
ab . (A.59)

Expanding the commutator [πi, πj]:

[πa, πb] =



pa + i
�

µ( �=a)

g

xaµ

saµ, pb + i
�

ν( �=b)

g

xbν

sbν





= [pa, pb] + i
�

ν( �=b)

�

pa,
g

xbν

sbν

�

+ i
�

µ( �=a)

�

g

xaµ

saµ, pb

�

+

+ i2g2
�

g

xaµ

saµ, ,
g

xbν

sbν

�

. (A.60)

Now we separately analyze each commutator.
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a) It is evident the vanishing of the first term in (A.58)

[pa, pb] = 0 . (A.61)

b) The second member of (A.58) is

ig
�

ν( �=b)

�

pa,
1

xbν

sbν

�

ψ = ig

�

pa,
1

xba

sba

�

ψ + ig
�

ν( �=a,b)

�

pa,
1

xbν

sbν

�

ψ . (A.62)

The term without sum over ν:

�

pa,
sba

xba

�

ψ =

�

pa,
1

xba

�

sbaψ +
1

xba

[pa, sba]ψ = −
i

x2
ba

ψ −
(pb − pa)

xba

ψ . (A.63)

The second term vanishes, because a �= b and ν �= a:

ig
�

ν( �=a,b)

�

pa,
1

xbν

sbν

�

ψ = 0 . (A.64)

Then:

ig
�

ν( �=b)

�

pa,
1

xbν

sbν

�

= −
i2g

x2
ba

+
ig (pa − pb)

xba

. (A.65)

c) Proceeding with the third term in the same way:

ig
�

µ( �=a)

�

1

xaµ

saµ, pb

�

ψ = ig

�

1

xab

sab, pb

�

ψ + ig
�

µ �=a �=b

�

1

xaµ

saµ, pb

�

ψ . (A.66)

The last commutator in (A.66) vanishes due to the fact µ �= a �= b. For the first commu-

tator:

�

1

xab

sab, pb

�

ψ =
1

xab

[sab, pb]ψ +

�

1

xab

, pb

�

sabψ =
(pa − pb)

xab

ψ +
i2

x2
ab

ψ , (A.67)

=⇒ ig
�

µ( �=a)

�

1

xaµ

saµ, pb

�

=
ig (pa − pb)

xab

+
i2g

x2
ab

. (A.68)

d) For the last commutator, the trick consists in separating the sums according to the dif-

ferent possibilities:

�

µ �=a

�

ν �=b

�

1

xaµ

saµ,
1

xbν

sbν

�

=
�

µ �=a

�

1

xaµ

saµ,
1

xba

sba

�

+
�

µ �=a

�

ν �=a �=b

�

1

xaµ

saµ,
1

xbν

sbν

�

=

�

1

xab

sab,
1

xba

sba

�

+
�

µ �=a �=b

�

1

xaµ

saµ,
1

xba

sba

�

+
�

ν �=a �=b

�

1

xab

sab,
1

xbν

sbν

�

+

+
�

µ=ν �=a �=b

�

1

xaµ

saµ,
1

xbµ

sbµ

�

+
�

µ �=ν �=a �=b

�

1

xaµ

saµ,
1

xbν

sbν

�

. (A.69)
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Emphasizing the fact we apply those πk operators to functions belonging to res(πk), the

last expressions become successively

�

µ �=a �=b

�

1

xaµ

saµ,
1

xba

sba

�

=
�

µ �=a �=b

�

1

xaµxbµ

−
1

xbaxbµ

�

, (A.70)

�

ν �=a �=b

�

1

xab

sab,
1

xbν

sbν

�

=
�

ν �=a �=b

�

1

xabxaν

−
1

xbνxaν

�

, (A.71)

�

µ=ν �=a �=b

�

1

xaµ

saµ,
1

xbµ

sbµ

�

=
�

µ=ν �=a �=b

�

1

xaµxba

−
1

xbµxab

�

, (A.72)

�

µ �=ν �=a �=b

�

1

xaµ

saµ,
1

xbν

sbν

�

= 0 . (A.73)

Adding the equations (A.69), (A.70), (A.71) and (A.72), we obtain:

�

µ �=a

�

ν �=b

�

1

xaµ

saµ,
1

xbν

sbν

�

= 0 . (A.74)

Inserting the results (A.61), (A.65), (A.68), (A.74) in (A.58), we arrive to the vanishing of the

commutator [πa, πb]:

[πa, πb] = 0, ∀a, b = 1 . . . N . (A.75)
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A.3 COM-Decoupling and Commutators

Let us recall the transformation found in Section 2.4 for COM-decoupling:

* Level 1 operators:

(10�) = (10)

(01�) = (01)

(00�) = (00) = N = 3



















. (A.76)

* Level 2 operators:

(20�) = (20)−
1

3
(10|10)

(11�) = (11)−
1

3
(10|01)

(02�) = (02)−
1

3
(01|01)































. (A.77)

* Level 3 operators:

(30�) = (30)− (20|10) +
2

9
(10|10|10)

(21�) = (21)−
1

3
(20|01)−

2

3
(11|10) +

2

9
(10|10|01)

(12�) = (12)−
2

3
(11|01)−

1

3
(10|02) +

2

9
(10|01|01)

(03�) = (03)− (02|01) +
2

9
(01|01|01)















































. (A.78)

Because of their importance when dealing with the interaction Casimir operator, we show in a

detailed way the calculation for [30�, 03�]:

[30�, 03�] = [30, 03]− [30, (02|01)] +
2

9
· [30, (01|01|01)]

− [(20|10), 03] + [(20|10), (02|01)]−
2

9
· [(20|10), (01|01|01)]

+
2

9
· [(10|10|10), 03]−

2

9
· [(10|10|10), (02|01)] +

4

81
· [(10|10|10), (01|01|01)] , (A.79)

Useful formulae for the expansions:

(a|b|(c|d)) = (a|b|c|d) + (a|Rb
cd) + (b|Ra

cd) + +
1

12
([a, c]|[b, d]) +

1

12
([a, d]|[b, c]) , (A.80)

(a|(b|c|d)) = (a|b|c|d) + (b|Ra
cd) + (c|Ra

bd) + (d|Ra
bc) , (A.81)

[30, 03] = 9i(22) + 3i(00) , (A.82)

[30, (02|01)] = 6i(21|01) + 3i(20|02) , (A.83)

[30, (01|01|01)] = 9i(20|01|01) , (A.84)
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[(20|10), 03] = 6i(12|10) + 3i(20|02) , (A.85)

[(20|10), (01|01|01)] = 2i(10100101) +Ni(200101) +
N2i3

3
, (A.86)

[(20|10), (02|01)] = 4i(11|10|01) + 2i(20|01|01) + 2i(10|10|02) +Ni(20|02) +
6i3

N
, (A.87)

[(10|10|10), 03] = 3i(20|10|10) , (A.88)

−
6

N3
[(10|10|10), (02|01)] = −

36i

N3
(10|10|01|01)−

18i

N2
(10|10|02)−

6i3

N
, (A.89)

4

N4
[(10|10|10), (01|01|01)] =

36i

N3
(10|10|01|01) +

6i

N
. (A.90)

Adding the equation, and collecting similar terms, one gets

[30�, 03�] = 9i(22) + 3i(00)−
18i

N
(21|01)−

9i

N
(20|02)−

18i

N
(12|10)+

+
18i

N2
(20|01|01) +

36i

N2
(11|10|01) +

18i

N2
(10|01|02)−

36i

N3
(10|10|01|01) . (A.91)

The expression for B22 with COM must be inserted in the last equation:

B22 =
2

3
(21|01) +

1

6
(20|02) +

2

3
(12|10) +

1

3
(11|11)+

−
1

6
(20|01|01)−

2

3
(11|10|01)−

1

6
(10|10|02) +

1

6
(10|10|01|01)−

3

2
. (A.92)

Collecting terms, replacing N = 3, etc., the result is:

i−1[30�, 03�] = −
3

2
(20|02) + 3(11|11) +

1

2
(20|01|01)− 2(11|10|01) +

1

2
(10|10|02)+

+
1

6
(10|10|01|01)−

9

2
. (A.93)

This result is given in the old COM-basis, but we need to express it in terms of the new primed

basis. We proceed by direct calculation of

(20�|02�) =

�

20−
1

3
(10|10)

�

�

�

�

02−
1

3
(01|01)

�

= (20|02)−
1

3
(20|(01|01))−

1

3
(02|(10|10)) +

1

9
((10|10)|(01|01)) . (A.94)

Applying the already known formulae for composed Weyl-ordered products, for example

(20|(01|01)) = (20|01|01) +R20
01,01 = (20|01|01) + i2 , (A.95)

we arrive to

(20�|02�) = (20|02)−
1

3
(20|01|01)−

1

3
(10|10|02) +

1

9
(10|10|01|01)−

i2

6
. (A.96)
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Similarly:

(11�|11�) =

�

11−
1

3
(10|01)

�

�

�

�

11−
1

3
(10|01)

�

= (11|11)−
2

3
(11|(10|01)) +

1

9
((10|01)|(10|01)) , (A.97)

=⇒ (11�|11�) = (11|11)−
2

3
(11|10|01) +

1

9
(10|10|01|01) +

i2

12
. (A.98)

Combining the results:

−
3

2
(20�|02�) + 3(11�|11�) = −

3

2
(20|02) + 3(11|11)+

+
1

2
(20|01|01)− 2(11|10|01) +

1

2
(10|10|02) +

1

6
(10|10|01|01) +

i2

2
. (A.99)

Replacing in (A.93), and collecting constant terms, we get the desired result:

[30�, 03�] = −
3

2
(20�|02�) + 3(11�|11�)− 4 . (A.100)

For the case of [21�, 12�] the procedure is the same:

[21�, 12�] = [21, 12]−
2

3
[21, (11|01)]−

1

3
[21, (10|02)] +

2

9
[21, (10|01|01)]+

−
1

3
[(20|01), 12] +

2

9
[(20|01), |(11|01)] +

1

9
[(20|01), (10|02)]−

2

27
[(20|01), (10|01|01)]+

−
2

3
[(11|10), 12] +

4

9
[(11|10), |(11|01)] +

2

9
[(11|10), (10|02)]−

4

27
[(11|10), (10|01|01)]+

−
2

9
[(10|10|01), 12]−

4

27
[(10|10|01), |(11|01)]−

2

27
[(10|10|01), (10|02)]+

+
4

81
[(10|10|01), (10|01|01)] . (A.101)

Expanding each product, collecting terms and paying attention to the constants:

i−1[21�, 12�] =
5

6
(20|02)−

1

3
(11|11)−

5

18
(20|01|01) +

2

9
(11|10|01)−

5

18
(10|10|02)+

+
1

18
(10|10|01|01) +

3

2
. (A.102)

Before we continue, we note the difference between this last result and (A.93), because the

products (20|02) and (11|11) exhibit different prefactors:
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i−1[30�, 03�] = −1
6
(20|02) + 3(11|11) + . . .

i−1[21�, 12�] = 5
6
(20|02)− 1

3
(11|11) + . . .

. (A.103)

Again, the equation (A.102) must be expressed in terms of the primed basis, etc. The final

expression then reads

i−1[21�, 12�] =
5

6
(20�|02�)−

1

3
(11�|11�) +

4

3
. (A.104)

The rest of the commutators are found using the same method: firstly, a direct calculation

by means of the definition, then a second calculation for expressing the result in terms of the

primed basis. The only difficult point has to do with the composed Weyl-ordered products and

the constants appearing when reducing to lower order terms.
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A.4 Casimir Operator for N = 2 particles

We work in the following basis:

{B10;B01;B20;B02;B11} . (A.105)

The operator B00 = N = 2 is only a constant, which does not affect the Weyl-ordered products.

A.4.1 Commutators

Note: The factor ±i in the results was omitted to simplify the writing.

[Bkl, Bmn] B10 B01 B20 B02 B11

B10 0 N 0 2B01 B10

B01 N 0 −2B10 0 −B01

B20 0 2B10 0 4B11 2B20

B02 −2B01 0 −4B11 0 −2B02

B11 −B10 B01 −2B20 2B02 0

. (A.106)

A.4.2 Ansatz

C22 = A(20|02)+B(11|11)+C(20|01|01)+D(11|10|01)+E(10|10|02)+F (10|10|01|01) . (A.107)

A.4.3 Calculations

Note: ±i factors are omitted!

[(20|02) , 10] = −2 (20|01)

[(11|11) , 10] = −2 (11|10)

[(20|01|01) , 10] = −2N (20|01)

[(11|10|01) , 10] = − (10|10|01)−N (11|10)

[(10|10|02) , 10] = −2 (10|10|01)

[(10|10|01|01) , 10] = −2N (10|10|01)

, (A.108)

[(20|02) , 01] = 2 (10|02)

[(11|11) , 01] = 2 (11|01)

[(20|01|01) , 01] = 2 (10|01|01)

[(11|10|01) , 01] = (10|01|01) +N (11|01)

[(10|10|02) , 01] = 2N (10|02)

[(10|10|01|01) , 01] = 2N (10|01|01)

, (A.109)
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[(20|02) , 20] = −4 (20|11)

[(11|11) , 20] = −4 (20|11)

[(20|01|01) , 20] = −4 (20|10|01)

[(11|10|01) , 20] = −2 (20|10|01)− 2 (11|10|10)

[(10|10|02) , 20] = −4 (11|10|10)

[(10|10|01|01) , 20] = −4 (10|10|10|01)

, (A.110)

[(20|02) , 02] = 4 (11|02)

[(11|11) , 02] = 4 (11|02)

[(20|01|01) , 02] = 4 (11|01|01)

[(11|10|01) , 02] = 2 (10|02|01) + 2 (11|01|01)

[(10|10|02) , 02] = 4 (10|02|01)

[(10|10|01|01) , 02] = 4 (10|01|01|01)

. (A.111)

The equations obtained can be summarized in the next expression:















































1 0 2 0 0 0

0 2 0 2 0 0

0 0 0 1 2 4

1 0 0 0 2 0

0 0 2 1 0 4

1 1 0 0 0 0

0 0 2 1 0 0

0 0 0 1 2 0

0 0 0 0 0 1











































































A

B

C

D

E

F





























=















































0

0

0

0

0

0

0

0

0















































. (A.112)

Using MapleTM, we have a general solution given by





























A

B

C

D

E

F





























= α





























−2

2

1

−2

1

0





























. (A.113)

Then, the Casimir operator for N = 2 and including center-of-mass takes this form:

C22 = α
�

− 2(20|02) + 2(11|11) + (20|01|01)− 2(11|10|01) + (10|10|02)
�

. (A.114)
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Just for completeness, we calculate the commutator [C22, 11]:

[(20|02) , 11] = 2 (20|02)− 2 (20|02) = 0

[(11|11) , 11] = 0

[(20|01|01) , 11] = 2 (20|01|01)− 2 (20|01|01) = 0

[(11|10|01) , 11] = (11|10|01)− (11|10|01) = 0

[(10|10|02) , 11] = 2 (10|10|02)− 2 (10|10|02) = 0

[(10|10|01|01) , 11] = 2 (10|10|01|01)− 2 (10|10|01|01) = 0

. (A.115)

So, the technique applied for N = 2 can be extended to N = 3 in a similar way, with two

differences:

* The operator basis includes now B30, B03, B21 and B12:

* The terms (21|01) and (12|10) will appear in the Casimir Operator, and their commutator

with level-3 operators will generate composed Weyl-ordered products, increasing the order

of the system of equations, but also producing terms that are not present in the original

Ansatz.
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A.5 Classical Poisson Casimir

When considering the limit � → 0 the contributions Cδ, C� and Cζ will disappear, but the other

terms will remain.

The main difference in the case of the Poisson bracket lies in the fact that all the variables

commute between themselves. Using the definition

{A,B} =
N
�

α=1

�

∂A

∂xα

∂B

∂pα
−

∂A

∂pα

∂B

∂xα

�

, (A.116)

it is immediately clear:

{xµ, pν} = δµν . (A.117)

As a practical consequence of commutativity, all the constants disappear when reordering the

Weyl-ordered products. But more important: there are no more composed Weyl-ordered prod-

ucts!!

We show one typical example, namely, we repeat the calculation for [30, 03]:

B30 := 30 =
3
�

µ

x3
µ , (A.118)

B03 := 03 =
3
�

ν

p3ν , (A.119)

{30, 03} =
3
�

µ,ν

�

x3
µ, p

3
ν

�

=
3
�

µ,ν

�

x3
µ, pν

�

p2ν +
3
�

µ,ν

pν
�

x3
µ, p

2
ν

�

. (A.120)

Applying bracket properties:
�

x3
µ, pν

�

p2ν = 3δµνx
2
µp

2
ν , (A.121)

�

x3
µ, p

2
ν

�

=
�

x3
µ, pν

�

pν + pν
�

x3
µ, pν

�

= 6δµνx
2
µpν . (A.122)

Inserting those results in (A.120):

{30, 03} =
3
�

µ,ν

9δµνx
2
µp

2
ν = 9

�

3
�

µ

x2
µp

2
µ

�

. (A.123)

By definition, the operator B22 in the classical case reads

B22 =
1

2

3
�

µ

�

x2
µp

2
µ + p2µx

2
µ

�

=
3
�

µ

x2
µp

2
µ , (A.124)

and it is evident

{30, 03} = 9(22) . (A.125)
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Similarly for the second most important commutator:

B21 := 21 =
1

2

3
�

µ=1

�

x2
µpµ + pµx

2
µ

�

=
3
�

µ=1

x2
µpµ , (A.126)

B12 := 12 =
1

2

3
�

µ=1

�

xµp
2
µ + p2µxµ

�

=
3
�

µ=1

xµp
2
µ , (A.127)

{21, 12} =
3
�

µ,ν=1

�

x2
µpµ, xνp

2
ν

�

=
3
�

µ,ν=1

�

x2
µpµ, xν

�

p2ν +
3
�

µ,ν=1

xν

�

x2
µpµ, p

2
ν

�

. (A.128)

Bracket properties:
�

x2
µpµ, xν

�

p2ν = x2
µ {pµ, xν} p

2
ν = −δµνx

2
µp

2
ν , (A.129)

xν

�

x2
µpµ, p

2
ν

�

= xν

�

x2
µ, p

2
ν

�

pµ (A.130)

= 4δµνxµxνpµpν . (A.131)

(A.129) and (A.130) in (A.128):

{21, 12} =
3
�

µ,ν=1

δµν
�

−x2
µp

2
ν + 4xµxνpµpν

�

= 3

�

3
�

µ

x2
µp

2
µ

�

. (A.132)

Finally, (A.124) in (A.132) yields

{21, 12} = 3(22) . (A.133)

This confirms the statement that there will be no constant terms in the commutators. Proceed-

ing in a similar way, one reproduces Table 21 of Section 3.5 and the equations for the constants

α, . . . , ζ are given by the following matrix:

* Sector α and β1, β2:




























































−18 −5
2 3 0 0 0 0

36 11
2 −9 0 0 0 0

−18 −3 6 0 0 0 0

18 5
2 −3 0 0 0 0

−36 −13
2 15 0 0 0 0

18 4 −12 0 0 0 0

0 −1
2 3 0 0 0 0

0 3
2 −9 0 0 0 0

0 1
2 −3 0 0 0 0

0 −3
2 9 0 0 0 0

...





























































. (A.134)
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* Sector β1, β2, γ:


































































































...

0 3 0 −1
2 0 0 0

0 −9 18 1 0 0 0

0 0 18 −1
2 0 0 0

0 12 −36 −1 0 0 0

0 −15 36 3
2 0 0 0

0 15 18 −3 0 0 0

0 −6 −36 2 0 0 0

0 −6 0 1 0 0 0

0 12 −36 −1 0 0 0

0 −6 −36 2 0 0 0

0 6 −18 −1
2 0 0 0

0 −6 72 −1 0 0 0

0 0 0 0 0 0 0

0 −6 36 0 0 0 0

0 6 −36 0 0 0 0
...



































































































. (A.135)

* Sector δ, �, ζ:
















































...

0 0 0 0 0 0 6

0 0 0 0 0 9 0

0 0 0 0 12 5
2 0

0 0 0 0 −12 −3 0

0 0 0 0 −12 −5
2 0

0 0 0 0 0 1
2 0

0 0 0 0 0 −3
2 0

0 0 0 0 12 4 0

















































. (A.136)

Solving the system of equations with help of MapleTM, the solution reads:

α = α; β1 = −
3

2
α; β2 = −9α; γ = −54α; δ = 0; � = 0; ζ = 0 . (A.137)
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A.6 Composed Weyl-ordered products and Reduction Formulas

In this section the proofs of the different expressions for composed Weyl-Products are given.

We start with useful formulae associated to pure products:

(a|b) =
1

2!
[ab+ ba] = (b|a) , (A.138)

(a|b|c) =
1

3
[a (b|c) + b (a|c) + c (a|b)] =

1

3
[(a|b) c+ (b|c) a+ (c|a) b] , (A.139)

(a|b|c|d) =
1

4
[a (b|c|d) + b (a|c|d) + c (a|b|d) + d (a|b|c)]

=
1

4
[(b|c|d) a+ (c|d|a) b+ (d|a|b) c+ (a|b|c) d]

=
1

3
[((a|b) | (c|d)) + ((a|c) | (b|d)) + ((a|d) | (b|c))] . (A.140)

A) (a|(b|c)). We start with the definition of the Weyl-Product (a|b|c):

3(a|b|c) = a(b|c) + b(a|c) + c(a|b)

3(a|b|c) = a(b|c) +
bac

2
+

bca

2
+

cab

2
+

cba

2

3(a|b|c) = a(b|c) + (b|c)a+
bac+ cab

2
. (A.141)

In the same way:

2(a|(b|c)) = a(b|c) + (b|c)a . (A.142)

Subtracting the equations (A.141) and (A.142):

6 [(a|(b|c))− (a|b|c)] = a(b|c) + (b|c)a− (bac+ cab)

=
abc

2
+

acb

2
+

bca

2
+

cba

2
−

bac

2
−

bac

2
−

cab

2
−

cab

2

=
1

2
([a, b]c− c[a, b]− b[a, c] + [a, c]b)

=
1

2
([[a, b], c] + [[a, c], b]) . (A.143)

Defining

Ra
bc =

1

12
([[a, b], c] + [[a, c], b]) , (A.144)

and inserting in (A.143) we arrive to the desired result:

6 ((a|(b|c))− (a|b|c)) =
1

2
([[a, b], c] + [[a, c], b])

=⇒ (a|(b|c)) = (a|b|c) +Ra
bc . (A.145)
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B) (a|b|(c|d)). We insert this proof because it is very didactical when calculating more

complicated composed products. Let us start by defining ζ := ((a|b)|(c|d)) with the help

of (A.145):

ζ := ((a|b)|(c|d)) = ((a|b)|c|d) +R
(a|b)
cd , (A.146)

((a|b)|(c|d)) = ((c|d)|a|b) +R
(c|d)
ab . (A.147)

Additionally, we define the following symbol for reducing computations:

< x|y|z >:= xyz − zyx , (A.148)

satisfying the properties:

< x+ y|u|v >=< x|u|v > + < y|u|v > , (A.149)

< x|u|y + z >=< x|u|y > + < x|u|z > , (A.150)

< x|u+ v|y >=< x|u|y > + < x|v|y > . (A.151)

From the equations (A.146) and (A.147), we can conclude

((a|b)|c|d) +R
(a|b)
cd = ((c|d)|a|b) +R

(c|d)
ab , (A.152)

=⇒ ((a|b)|c|d)− ((c|d)|a|b) = R
(c|d)
ab −R

(a|b)
cd . (A.153)

We calculate the difference on the left-hand side:

((a|b)|c|d)− ((c|d)|a|b) =
1

6























































(a|b)cd

(a|b)dc

c(a|b)d

cd(a|b)

d(a|b)c

dc(a|b)























































−
1

6























































(c|d)ab

(c|d)ba

a(c|d)b

ab(c|d)

b(c|d)a

ba(c|d)























































, (A.154)

((a|b)|c|d)− ((c|d)|a|b) =
1

6



















2(a|b)(c|d)

< c|(a|b)|d >

2(c|d)(a|b)



















−
1

6



















2(c|d)(a|b)

< a|(c|d)|b >

2(a|b)(c|d)



















, (A.155)

∴ ((a|b)|c|d)− ((c|d)|a|b) =
1

6
< c|(a|b)|d > −

1

6
< a|(c|d)|b >= R

(c|d)
ab −R

(a|b)
cd . (A.156)

In a similar way:

((a|b)|c|d) + ((c|d)|a|b) =
1

6



















2(a|b)(c|d)

< c|(a|b)|d >

2(c|d)(a|b)



















+
1

6



















2(c|d)(a|b)

< a|(c|d)|b >

2(a|b)(c|d)



















, (A.157)
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=⇒ ((a|b)|c|d)+ ((c|d)|a|b) =
8

6
((a|b)|(c|d))+

1

6
< c|(a|b)|d > + < a|(c|d)|b > . (A.158)

Then, adding the equations (A.146) and (A.147) we get

2((a|b)|(c|d)) =
4

3
((a|b)|(c|d)) +

1

6
< c|(a|b)|d > +

1

6
< a|(c|d)|b > +R

(a|b)
cd +R

(c|d)
ab ,

(A.159)

=⇒
2

3
((a|b)|(c|d))−

1

6
< c|(a|b)|d > −

1

6
< a|(c|d)|b >= R

(a|b)
cd +R

(c|d)
ab . (A.160)

Recalling the result (A.147)

(a|b|(c|d)) +R
(c|d)
ab = ((a|b)|(c|d))

= 3(a|b|c|d)− ((a|c)|(b|d))− ((a|d)|(b|c))

= (a|b|c|d) + 2(a|b|c|d)− ((a|c)|(b|d))− ((a|d)|(b|c))

= (a|b|c|d) +
2

3
((a|b)|(c|d)) +

−
1

3
((a|c)|(b|d))−

1

3
((a|d)|(b|c)) , (A.161)

and solving for (a|b|(c|d)), one gets

(a|b|(c|d)) = (a|b|c|d) +
2

3
((a|b)|(c|d))−R

(c|d)
ab −

1

3
((a|c)|(b|d))−

1

3
((a|d)|(b|c)) . (A.162)

Putting in the right-hand side of the last equation the expression for R
(c|d)
ab that follows

from (A.160):

(a|b|(c|d)) = (a|b|c|d) +R
(a|b)
cd +

1

6
< c|(a|b)|d > +

1

6
< a|(c|d)|b > +

−
1

3
[((a|c)|(b|d)) + ((a|d)|(b|c))] �. (A.163)

There is an extra property, whose proof is straightforward using direct calculation:

((a|c)|(b|d)) + ((a|d)|(b|c))−
1

2
< c|(a|b)|d > −

1

2
< a|(c|d)|b >=

=
1

4
([a, c]|[b, d]) +

1

4
([a, d]|[b, c]) , (A.164)

and putting this result in the equation (A.163), the expression reduces considerably:

=⇒ (a|b|(c|d)) = (a|b|c|d) +R
(a|b)
cd −

1

12
([a, c]|[b, d])−

1

12
([a, d]|[b, c]) . (A.165)

Finally, inserting the definition (A.174) of R
(a|b)
cd

R
(a|b)
cd = (a|Rb

cd) + (b|Ra
cd) +

1

6
([a, c]|[b, d]) +

1

6
([a, d]|[b, c]) (A.166)

in the equation (A.165), we arrive to the desired result:

(a|b|(c|d)) = (a|b|c|d) + (a|Rb
cd) + (b|Ra

cd) +
1

12
([a, c]|[b, d]) +

1

12
([a, d]|[b, c]) . (A.167)
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C) For the rest of the needed composed products, we apply the following idea: more com-

plicated products must reproduce in limiting cases the already known formulae. For

example, given the reduction formula

(a|b|(d|e)) = (a|b|d|e) + (a|Rb
de) + (b|Ra

de) +
1

12
([a, d]|[b, e]) +

1

12
([a, e]|[b, d]) , (A.168)

the next case (a|b|c|(d|e)) should contain this previous one when c → 1, so we can

postulate:

(a|b|c|(d|e)) = (a|b|c|d|e) + (a|b|Rc
de) + (a|c|Rb

de) + (b|c|Ra
de)

+
1

12
(a|[b, d]|[c, e]) +

1

12
(a|[b, e]|[c, d]) +

1

12
(b|[a, d]|[c, e]) +

1

12
(b|[a, e]|[c, d])

+
1

12
(c|[a, d]|[b, e]) +

1

12
(c|[a, e]|[b, d]) + new terms . (A.169)

Which form should exhibit those new terms? We have two possibilities, trying to form

new rests:

(a|[b, d]|[c, e]) −→ Ra
[b,d],[c,e] , (A.170)

(a|b|Rc
de) −→ R

Rc
de

ab . (A.171)

So, we reduce the problem to determine constants “x” and “y” for reproducing the full

expansion of (a|b|c|(d|e)):

(a|b|c|(d|e)) = (a|b|c|d|e) + (a|b|Rc
de) + (a|c|Rb

de) + (b|c|Ra
de)+

+
1

12
(a|[b, d]|[c, e]) +

1

12
(a|[b, e]|[c, d]) +

1

12
(b|[a, d]|[c, e]) +

1

12
(b|[a, e]|[c, d])

+
1

12
(c|[a, d]|[b, e]) +

1

12
(c|[a, e]|[b, d])+

+ x ·











Ra
[b,d][c,e] +Ra

[b,e][c,d]

Rb
[a,d][c,e] +Rb

[a,e][c,d]

Rc
[a,d][b,e] +Rc

[a,e][b,d]











+ y ·











R
Ra

de

bc

R
Rb

de
ac

R
Rc

de

ab











. (A.172)

Please note, we are not working with matrices, it is only notation:

y ·











R
Ra

de

bc

R
Rb

de
ac

R
Rc

de

ab











:= y ·
�

R
Ra

de

bc +R
Rb

de
ac +R

Rc
de

ab

�

. (A.173)
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With the help of MapleTMa simple program was written for expanding those products;

identifying similar terms, and solving the respective system of equations, a solution for x

and y was found. The same procedure is repeated for the rest of the composed products

appearing in the calculations for [C, 30] and [C, 21]. We just summarize the main formulae

obtained with this method:

R
(a|b)
cd = (a|Rb

cd) + (b|Ra
cd) +

1

6
([a, c]|[b, d]) +

1

6
([a, d]|[b, c]) , (A.174)

R
(a|b|c)
de = (a|b|Rc

de) + (a|c|Rb
de) + (b|c|Ra

de)+

+
1

6
(a|[b, d]|[c, e]) +

1

6
(a|[b, e]|[c, d])+

+
1

6
(b|[a, d]|[c, e]) +

1

6
(b|[a, e]|[c, d])+

+
1

6
(c|[a, d]|[b, e]) +

1

6
(c|[a, e]|[b, d]) , (A.175)

(a|(b|c)) = (a|b|c) +Ra
bc , (A.176)

(a|(b|c|d)) = (a|b|c|d) +











(b|Ra
cd)

(c|Ra
bd)

(d|Ra
bc)











, (A.177)

(a|(b|c|d|e)) = (a|b|c|d|e) +





























(b|c|Ra
de)

(b|d|Ra
ce)

(b|e|Ra
cd)

(c|d|Ra
be)

(c|e|Ra
bd)

(d|e|Ra
bc)





























−

�

1

5

�





























R
Ra
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R
Ra
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bd

R
Ra
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be

R
Ra

be

cd

R
Ra

bd
ce

R
Ra
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



























, (A.178)
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(a|(b|c|d|e|f)) = (a|b|c|d|e|f) +





















































(b|c|d|Ra
ef )

(b|c|e|Ra
df )

(b|d|e|Ra
cf )

(c|d|e|Ra
bf )

(c|e|f |Ra
de)

(b|d|f |Ra
ce)

(c|d|f |Ra
be)

(b|e|f |Ra
cd)

(c|e|f |Ra
bd)

(d|e|f |Ra
bc)
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
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


















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













+

−
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














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


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


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
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ef
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Ra
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Ra
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Ra

df
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Ra
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cf

be ) + (e|R
Ra
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bd )

(c|R
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bf
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Ra
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Ra

de

bf ) + (f |R
Ra
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bc )

(b|R
Ra
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df ) + (d|R
Ra

ce

bf ) + (f |R
Ra

ce

bd )

(c|R
Ra

be

df ) + (d|R
Ra

be

cf ) + (f |R
Ra

be

cd )

(b|R
Ra

cd

ef ) + (e|R
Ra

cd

bf ) + (f |R
Ra

cd

be )

(c|R
Ra

bd

ef ) + (e|R
Ra

bd

cf ) + (f |R
Ra

bd
ce )

(d|R
Ra

bc

ef ) + (e|R
Ra

bc

df ) + (f |R
Ra

bc

de )


















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




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
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







, (A.179)

(a|b|(c|d)) = (a|b|c|d) +





(a|Rb
cd)

(b|Ra
cd)



+

�

1

12

�





([a, c]|[b, d])

([a, d]|[b, c])



 , (A.180)

(a|b|c|(d|e)) = (a|b|c|d|e) +











(a|b|Rc
de)

(a|c|Rb
de)

(b|c|Ra
de)











+

�

1

12

�











(a|[b, d]|[c, e]) + (a|[b, e]|[c, d])

(b|[a, d]|[c, e]) + (b|[a, e]|[c, d])

(c|[a, d]|[b, e]) + (c|[a, e]|[b, d])











+

�

1

30

�











Ra
[b,d][c,e] +Ra

[b,e][c,d]

Rb
[a,d][c,e] +Rb

[a,e][c,d]

Rc
[a,d][b,e] +Rc

[a,e][b,d]











−
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R
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R
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R
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







, (A.181)
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(a|b|c|d|(e|f)) = (a|b|c|d|e|f) +

















(a|b|c|Rd
ef )

(a|b|d|Rc
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(a|c|d|Rb
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(b|c|d|Ra
ef )
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
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
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









([a, e]|[b, f ]|c|d) + ([a, f ]|[b, e]|c|d)

([a, e]|[c, f ]|b|d) + ([a, f ]|[c, e]|b|d)

([a, e]|[d, f ]|b|c) + (a[, f ]|[d, e]|b|c)

([b, e]|[c, f ]|a|d) + ([b, f ]|[c, e]|a|d)

([b, e]|[d, f ]|a|c) + ([b, f ]|[d, e]|a|c)

([c, e]|[d, f ]|a|b) + ([c, f ]|[d, e]|a|b)
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[b,e][c,f ]|d) + (Ra

[b,f ][c,e]|d)
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[b,e][d,f ]|c) + (Ra

[b,f ][d,e]|c)

(Ra
[c,e][d,f ]|b) + (Ra

[c,f ][d,e]|b)

(Rb
[a,e][c,f ]|d) + (Rb

[a,f ][c,e]|d)

(Rb
[a,e][d,f ]|c) + (Rb

[a,f ][d,e]|c)

(Rb
[c,e][d,f ]|a) + (Rb

[c,f ][d,e]|a)

(Rc
[a,e][b,f ]|d) + (Rc

[a,f ][b,e]|d)

(Rc
[b,e][d,f ]|a) + (Rc

[b,f ][d,e]|a)

(Rc
[a,e][d,f ]|b) + (Rc

[a,f ][d,e]|b)

(Rd
[b,e][c,f ]|a) + (Rd

[b,f ][c,e]|a)

(Rd
[a,e][b,f ]|c) + (Rd
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[a,f ][c,e]|b)



































































−

�

1

5

�

















(R
Rd
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bc |a) + (R
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ac |b) + (R
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Rc
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bd |a) + (R
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ad |b) + (R
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ab |d)
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Rb
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Rb
ef

ad |c)

(R
Ra

ef

cd |b) + (R
Ra

ef

bc |d) + (R
Ra

ef

bd |c)

















+

�

1

720

�



































































([[a, e], b]|[[c, f ], d]) + ([[a, e], b]|[[d, f ], c])

([[a, e], c]|[[b, f ], d]) + ([[a, e], c]|[[d, f ], b])

([[a, e], d]|[[b, f ], c]) + ([[a, e], d]|[[c, f ], b])

([[a, f ], b]|[[c, e], d]) + ([[a, f ], b]|[[d, e], c])

([[a, f ], c]|[[b, e], d]) + ([[a, f ], c]|[[d, e], b])

([[a, f ], d]|[[b, e], c]) + ([[a, f ], d]|[[c, e], b])

([[b, e], a]|[[c, f ], d]) + ([[b, e], a]|[[d, f ], c])

([[b, e], c]|[[d, f ], a]) + ([[b, e], d]|[[c, f ], a])

([[b, f ], a]|[[c, e], d]) + ([[b, f ], a]|[[d, e], c])

([[b, f ], c]|[[d, e], a]) + ([[b, f ], d]|[[c, e], a])

([[c, e], a]|[[d, f ], b]) + ([[c, e], b]|[[d, f ], a])

([[c, f ], a]|[[d, e], b]) + ([[c, f ], b]|[[d, e], a])



































































−

�

1

60

�







































































�

[a, e]|R
[b,f ]
cd

�

+
�

[a, f ]|R
[b,e]
cd

�

�

[a, e]|R
[c,f ]
bd

�

+
�

[a, f ]|R
[c,e]
bd

�

�

[a, e]|R
[d,f ]
bc

�

+
�

[a, f ]|R
[d,e]
bc

�

�

[b, e]|R
[a,f ]
cd

�

+
�

[b, f ]|R
[a,e]
cd

�

�

[b, e]|R
[c,f ]
ad

�

+
�

[b, f ]|R
[c,e]
ad

�

�

[b, e]|R
[d,f ]
ac

�

+
�

[b, f ]|R
[d,e]
ac

�

�

[c, e]|R
[a,f ]
bd

�

+
�

[c, f ]|R
[a,e]
bd

�

�

[c, e]|R
[b,f ]
ad

�

+
�

[c, f ]|R
[b,e]
ad

�

�

[c, e]|R
[d,f ]
ab

�

+
�

[c, f ]|R
[d,e]
ab

�

�

[d, e]|R
[a,f ]
bc

�

+
�

[d, f ]|R
[a,e]
bc

�

�

[d, e]|R
[b,f ]
ac

�

+
�

[d, f ]|R
[b,e]
ac

�

�

[d, e]|R
[c,f ]
ab

�

+
�

[d, f ]|R
[c,e]
ab

�







































































.

(A.182)

81



A.7 Contributions from composed Weyl-ordered products

The following tables show the results when expanding non-pure Weyl-ordered products appear-

ing in [C, B30] and [C, B21], using the formulae (A.174) to (A.182) of section A.6.

1

6
((20|20)|30|11|02|02) 1

6
((20|11)|30|20|02|02) − 1

6
((20|02)|30|20|11|02) 1

3
((11|11)|30|20|11|02)

1

6
(30|20|20|11|02|02) 1

6
(30|20|20|11|02|02) − 1

6
(30|20|20|11|02|02) 1

3
(30|20|11|11|11|02)

− 8

9
(30|20|11|02) + 1

9
(30|20|11|02) − 5

6
(30|20|11|02) − 13

18
(30|20|11|02)

− 4

9
(30|11|11|11) + 2

9
(21|20) − 1

6
(21|20|20|02) + 199

270
(30|11)

+ 74

135
(30|11) − 19

135
(30|11) − 1

3
(21|20|11|11) + 1

9
(21|20)

+ 2

9
(21|20) − 2

9
(30|11|11|11)

+ 37

90
(30|11)

+ 37

90
(21|20)

1

6
((20|11)|30|11|11|02) − 1

6
((20|02)|30|11|11|11) 1

3
((11|11)|30|11|11|11) 1

6
((20|20)|21|20|02|02)

1

6
(30|20|11|11|11|02) − 1

6
(30|20|11|11|11|02) 1

3
(30|11|11|11|11|11) 1

6
(21|20|20|20|02|02)

+ 1

18
(30|11|11|11) − 5

6
(30|11|11|11) − 1

2
(30|11|11|11) − 4

9
(21|20|20|02)

+ 1

6
(30|20|11|02) − 1

2
(21|20|11|11) − 9

20
(30|11) − 4

9
(30|20|11|02)

− 13

180
(30|11) − 1

3
(30|20|11|02) − 4

9
(21|20|11|11)

− 59

180
(30|11) + 8

45
(21|20)

− 3

20
(21|20) + 32

135
(30|11)

1

6
((20|20)|21|11|11|02) 1

6
((20|20)|20|20|03|02) − 1

6
((20|02)|21|20|20|02) 1

3
((11|11)|21|20|20|02)

1

6
(21|20|20|11|11|02) 1

6
(20|20|20|20|03|02) − 1

6
(21|20|20|20|02|02) 1

3
(21|20|20|11|11|02)

− 2

3
(21|20|11|11) − 2

9
(20|20|20|03) − 13

18
(21|20|20|02) − 11

18
(21|20|20|02)

− 2

9
(30|20|11|02) − 2

3
(21|20|20|02) − 2

9
(30|20|11|02) + 113

135
(21|20)

− 2

9
(30|11|11|11) − 2

3
(20|20|12|11) − 2

9
(20|20|12|11) + 8

135
(30|11)

− 1

9
(21|20|20|02) + 68

45
(21|20) − 4

9
(21|20|11|11)

− 11

45
(30|11) − 8

45
(30|11) + 91

135
(21|20)

− 1

9
(21|20) + 2

27
(30|11)

1

6
((20|20)|20|12|11|02) 1

6
((20|11)|21|20|11|02) 1

6
((20|20)|20|11|11|03) − 1

6
((20|02)|21|20|11|11)

1

6
(20|20|20|12|11|02) 1

6
(21|20|20|11|11|02) 1

6
(20|20|20|11|11|03) − 1

6
(21|20|20|11|11|02)

− 4

9
(20|20|12|11) + 1

18
(21|20|11|11) − 2

3
(21|20|11|11) − 7

6
(21|20|11|11)

− 2

9
(30|20|11|02) + 1

12
(21|20|20|02) − 1

9
(20|20|20|03) − 1

9
(30|11|11|11)

− 2

9
(21|20|20|02) + 1

9
(30|20|11|02) − 2

3
(20|20|12|11) − 1

9
(30|20|11|02)

− 4

9
(21|20|11|11) − 14

135
(30|11) − 1

9
(21|20) − 2

9
(20|20|12|11)

+ 38

135
(30|11) − 59

540
(21|20) − 1

9
(21|20|20|02)

+ 22

135
(21|20) − 73

270
(30|11)

− 229

540
(21|20)

Table 23: Composed Weyl-ordered products from [Cβ, 30] = 0 (part 1).

82



1

3
((11|11)|21|20|11|11) 1

6
((20|20)|12|11|11|11) 1

6
((20|11)|21|11|11|11) − 1

6
((20|02)|20|20|20|03)

1

3
(21|20|11|11|11|11) 1

6
(20|20|12|11|11|11) 1

6
(21|20|11|11|11|11) − 1

6
(20|20|20|20|03|02)

− 7

18
(21|20|11|11) − 2

9
(30|11|11|11) + 1

4
(21|20|11|11) − 1

2
(20|20|20|03)

− 2

27
(30|11) − 2

3
(21|20|11|11) + 1

9
(30|11|11|11) −(20|20|12|11)

− 23

540
(21|20) − 1

3
(20|20|12|11) + 1

6
(30|11) + 14

15
(21|20)

− 1

9
(30|11) + 11

360
(21|20) − 4

15
(30|11)

− 1

9
(21|20)

1

3
((11|11)|20|20|20|03) 1

6
((20|11)|20|20|12|02) 1

6
((20|11)|20|20|11|03) − 1

6
((20|02)|20|20|12|11)

1

3
(20|20|20|11|11|03) 1

6
(20|20|20|12|11|02) 1

6
(20|20|20|11|11|03) − 1

6
(20|20|20|12|11|02)

− 5

6
(20|20|20|03) + 1

18
(20|20|12|11) + 1

12
(20|20|20|03) − 19

18
(20|20|12|11)

+ 10

3
(21|20) + 1

9
(21|20|20|02) − 1

3
(21|20) − 4

9
(21|20|11|11)

− 22

135
(21|20) − 1

9
(21|20|20|02)

+ 2

135
(30|11) − 1

18
(20|20|20|03)

+ 26

135
(30|11)

− 2

45
(21|20)

1

3
((11|11)|20|20|12|11) 1

6
((20|11)|20|12|11|11)

1

3
(20|20|12|11|11|11) 1

6
(20|20|12|11|11|11)

− 1

2
(20|20|12|11) + 1

6
(20|20|12|11)

+ 2

9
(30|11) + 1

9
(21|20|11|11)

− 2

27
(30|11)

+ 1

54
(21|20)

Table 24: Composed Weyl-ordered products from [Cβ, 30] = 0 (part 2).
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− 1

6
((20|02)|30|30|03) 1

3
((11|11)|30|30|03) 1

6
((20|20)|30|12|03) 1

6
((20|11)|30|21|03)

− 1

6
(30|30|20|03|02) 1

3
(30|30|11|11|03) 1

6
(30|20|20|12|03) 1

6
(30|21|20|11|03)

− 1

2
(30|30|03) −(30|30|03) − 2

9
(30|30|03) + 1

9
(30|30|03)

−(30|21|12) − 3

5
(21|20) − 4

3
(30|21|12) + 1

8
(21|20)

+ 1

10
(21|20) + 6

5
(30|11) + 2

15
(21|20) − 11

60
(30|11)

+ 1

15
(30|11) + 4

45
(30|11)

− 1

6
((20|02)|30|21|12) 1

3
((11|11)|30|21|12) 1

6
((20|11)|30|12|12) 1

6
((20|20)|21|21|03)

− 1

6
(30|21|20|12|02) 1

3
(30|21|12|11|11) 1

6
(30|20|12|12|11) 1

6
(21|21|20|20|03)

− 4

3
(30|21|12) − 5

9
(30|21|12) + 2

9
(30|21|12) − 2

3
(21|21|21)

− 1

18
(30|30|03) + 1

18
(21|20) − 1

18
(21|20) − 1

9
(30|30|03)

− 1

3
(21|21|21) − 7

135
(30|11) + 7

135
(30|11) − 2

3
(30|21|12)

+ 1

12
(21|20) − 4

15
(21|20)

− 1

30
(30|11) + 8

45
(30|11)

− 1

6
((20|02)|21|21|21) 1

3
((11|11)|21|21|21) 1

6
((20|20)|21|12|12) 1

6
((20|11)|21|21|12)

− 1

6
(21|21|21|20|02) 1

3
(21|21|21|11|11) 1

6
(21|20|20|12|12) 1

6
(21|21|20|12|11)

− 7

6
(21|21|21) − 1

3
(21|21|21) − 8

9
(30|21|12) + 2

9
(30|21|12)

− 2

3
(30|21|12) − 4

9
(21|21|21) + 1

9
(21|21|21)

− 1

5
(21|20) + 1

15
(21|20) − 1

60
(21|20)

+ 2

45
(30|11) − 2

27
(30|11) + 1

54
(30|11)

Table 25: Composed Weyl-ordered products from [Cγ, 30] = 0.

1

6
((20|11)|30|02) − 1

6
((20|02)|30|11) 1

3
((11|11)|30|11) 1

6
((20|20)|21|02) 1

6
((20|20)|20|03)

1

6
(30|20|11|02) − 1

6
(30|20|11|02) 1

3
(30|11|11|11) 1

6
(21|20|20|02) 1

6
(20|20|20|03)

+ 1

18
(30|11) − 7

18
(30|11) − 1

2
(30|11) − 2

9
(21|20) − 2

3
(21|20)

− 1

6
(21|20) − 2

9
(30|11)

− 1

6
((20|02)|21|20) 1

3
((11|11)|21|20) 1

6
((20|20)|12|11) 1

6
((20|11)|21|11) 1

6
((20|11)|20|12)

− 1

6
(21|20|20|02) 1

3
(21|20|11|11) 1

6
(20|20|12|11) 1

6
(21|20|11|11) 1

6
(20|20|12|11)

− 1

2
(21|20) − 7

18
(21|20) − 2

9
(30|11) + 1

9
(30|11) + 1

9
(21|20)

− 1

9
(30|11) − 2

9
(21|20) + 1

12
(21|20)

Table 26: Composed Weyl-ordered products from [C�, 30] = 0.
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1

6
((20|20)|30|02|02|02) 1

6
((20|20)|21|11|02|02) 1

6
((20|20)|20|12|02|02) 5

6
((20|02)|30|20|02|02)

1

6
(30|20|20|02|02|02) 1

6
(21|20|20|11|02|02) 1

6
(20|20|20|12|02|02) 5

6
(30|20|20|02|02|02)

− 2

3
(30|20|02|02) − 8

9
(21|20|11|02) − 4

9
(20|20|12|02) + 5

2
(30|20|02|02)

− 4

3
(30|11|11|02) − 1

9
(30|20|02|02) − 2

9
(30|20|02|02) + 10

3
(21|20|11|02)

+ 44

45
(30|02) − 4

9
(30|11|11|02) − 8

9
(21|20|11|02) + 20

9
(30|11|11|02)

+ 4

3
(21|11) − 4

9
(21|11|11|11) − 4

9
(20|12|11|11) − 67

27
(30|02)

− 2

27
(30|02) + 52

135
(30|02) − 2

3
(20|12)

− 2

45
(21|11) + 4

45
(20|12) − 14

3
(21|11)

+ 112

135
(21|11)

− 1

3
((11|11)|30|20|02|02) 1

6
((20|20)|20|11|03|02) 1

6
((11|02)|30|20|11|02) 1

6
((20|20)|12|11|11|02)

− 1

3
(30|20|11|11|02|02) 1

6
(20|20|20|11|03|02) 1

6
(30|20|11|11|02|02) 1

6
(20|20|12|11|11|02)

+ 11

18
(30|20|02|02) − 4

9
(20|20|11|03) − 1

36
(30|20|02|02) − 2

3
(20|12|11|11)

− 101

135
(30|02) − 2

3
(21|20|11|02) − 1

6
(30|11|11|02) − 2

9
(30|11|11|02)

− 2

9
(20|12) − 1

3
(20|20|12|02) − 1

3
(21|20|11|02) − 4

9
(21|20|11|02)

− 8

9
(21|11) − 2

3
(20|12|11|11) − 7

540
(30|02) − 4

9
(21|11|11|11)

+ 2

3
(21|11) + 4

45
(21|11) − 1

9
(20|20|12|02)

+ 5

9
(20|12) − 1

15
(20|12) − 1

27
(30|02)

− 2

27
(21|11)

− 1

45
(20|12)

5

6
((20|02)|30|11|11|02) − 1

3
((11|11)|30|11|11|02) 1

6
((20|20)|11|11|11|03) 1

6
((11|02)|30|11|11|11)

5

6
(30|20|11|11|02|02) − 1

3
(30|11|11|11|11|02) 1

6
(20|20|11|11|11|03) 1

6
(30|11|11|11|11|02)

+ 85

18
(30|11|11|02) + 7

18
(30|11|11|02) − 2

3
(21|11|11|11) − 1

12
(30|11|11|02)

+ 5

3
(21|20|11|02) − 2

9
(21|11) − 1

3
(20|20|11|03) − 1

3
(21|11|11|11)

+ 5

3
(21|11|11|11) − 17

540
(30|02) −(11|11|20|12) − 1

2
(21|11)

+ 5

9
(30|20|02|02) − 1

3
(21|11) − 49

360
(30|02)

+ 1

12
(30|02) − 1

6
(20|12)

− 31

18
(21|11)

− 4

9
(20|12)

Table 27: Composed Weyl-ordered products from [Cβ, 21] = 0 (part 1).
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1

6
((11|02)|21|20|20|02) 5

6
((20|02)|21|20|11|02) − 1

3
((11|11)|21|20|11|02) 1

6
((11|02)|21|20|11|11)

1

6
(21|20|20|11|02|02) 5

6
(21|20|20|11|02|02) − 1

3
(21|20|11|11|11|02) 1

6
(21|20|11|11|11|02)

− 1

3
(21|20|11|02) + 95

18
(21|20|11|02) + 5

18
(21|20|11|02) − 1

18
(21|20|11|02)

− 1

9
(20|20|12|02) + 5

9
(30|11|11|02) − 67

270
(21|11) − 1

6
(21|11|11|11)

− 2

45
(30|02) + 5

18
(30|20|02|02) + 1

135
(30|02) − 1

9
(20|12|11|11)

+ 22

135
(20|12) + 5

9
(20|20|12|02) − 4

45
(20|12) − 107

540
(21|11)

+ 1

27
(21|11) + 10

9
(20|12|11|11) − 17

270
(20|12)

+ 10

9
(21|11|11|11) − 2

135
(30|02)

+ 7

54
(30|02)

− 55

54
(21|11)

− 17

27
(20|12)

5

6
((20|02)|21|11|11|11) − 1

3
((11|11)|21|11|11|11) 1

6
((11|02)|20|20|20|03) 5

6
((20|02)|20|20|12|02)

5

6
(21|20|11|11|11|02) − 1

3
(21|11|11|11|11|11) 1

6
(20|20|20|11|03|02) 5

6
(20|20|20|12|02|02)

95

18
(21|11|11|11) + 1

18
(21|11|11|11) − 1

2
(20|20|11|03) + 65

18
(20|20|12|02)

+ 5

6
(30|11|11|02) + 1

180
(21|11) + 2

3
(20|12) + 20

9
(21|20|11|02)

+ 5

3
(20|12|11|11) + 2

3
(21|11) + 20

9
(20|12|11|11)

+ 5

3
(21|20|11|02) + 5

9
(20|20|11|03)

+ 199

36
(21|11) − 2

9
(30|02)

+ 11

12
(30|02) − 79

27
(20|12)

+ 17

18
(20|12) − 56

27
(21|11)

− 1

3
((11|11)|20|20|12|02) 5

6
((20|02)|20|20|11|03) − 1

3
((11|11)|20|20|11|03) 1

6
((11|02)|20|20|12|11)

− 1

3
(20|20|12|11|11|02) 5

6
(20|20|20|11|03|02) − 1

3
(20|20|11|11|11|03) 1

6
(20|20|12|11|11|02)

+ 7

18
(20|20|12|02) + 25

6
(20|20|11|03) + 1

2
(20|20|11|03) − 1

36
(20|20|12|02)

− 2

15
(30|02) + 10

3
(20|12|11|11) − 2

3
(21|11) − 1

3
(20|12|11|11)

− 1

3
(20|12) + 5

6
(20|20|12|02) − 2

3
(20|12) − 4

45
(21|11)

− 16

45
(21|11) −2(21|11) − 11

45
(20|12)

− 8

3
(20|12) + 1

45
(30|02)

+ 2

9
(30|02)

5

6
((20|02)|20|12|11|11) − 1

3
((11|11)|20|12|11|11)

5

6
(20|20|12|11|11|02) − 1

3
(20|12|11|11|11|11)

+ 35

6
(20|12|11|11) + 1

6
(20|12|11|11)

+ 10

9
(21|11|11|11) + 1

180
(20|12)

+ 10

9
(21|20|11|02)

+ 5

9
(20|20|11|03)

+ 5

9
(20|20|12|02)

+ 17

27
(21|11)

+ 229

108
(20|12)

− 8

27
(30|02)

Table 28: Composed Weyl-ordered products from [Cβ, 21] = 0 (part 2).
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1

6
((20|20)|30|03|03) 1

6
((11|02)|30|30|03) 1

6
((20|20)|21|12|03) 5

6
((20|02)|30|21|03)

1

6
(30|20|20|03|03) 1

6
(30|30|11|03|02) 1

6
(21|20|20|12|03) 5

6
(30|21|20|03|02)

− 4

3
(30|21|03) − 2

3
(30|21|03) − 4

9
(30|21|03) + 40

9
(30|21|03)

−(30|12|12) − 7

30
(20|12) − 4

3
(21|21|12) + 5

3
(30|12|12)

+ 1

5
(20|12) + 11

60
(30|02) − 1

3
(30|12|12) + 5

2
(21|21|12)

+ 2

5
(21|11) + 11

30
(21|11) − 37

270
(20|12) + 2

9
(20|12)

+ 1

15
(30|02) + 2

27
(30|02) − 17

18
(21|11)

+ 2

27
(21|11) − 13

36
(30|02)

− 1

3
((11|11)|30|21|03) 1

6
((11|02)|30|21|12) 1

6
((20|20)|12|12|12) 5

6
((20|02)|30|12|12)

− 1

3
(30|21|11|11|03) 1

6
(30|21|12|11|02) 1

6
(20|20|12|12|12) 5

6
(30|20|12|12|02)

+ 5

9
(30|21|03) − 1

3
(21|21|12) − 2

3
(30|12|12) + 85

18
(30|12|12)

+ 2

45
(20|12) − 1

9
(30|12|12) − 4

3
(21|21|12) + 10

3
(21|21|12)

− 7

90
(30|02) + 11

540
(20|12) + 37

135
(20|12) + 10

9
(30|21|03)

− 7

45
(21|11) − 5

216
(30|02) − 4

27
(30|02) − 11

9
(20|12)

− 5

108
(21|11) − 4

27
(21|11) + 13

27
(30|02)

+ 2

9
(21|11)

− 1

3
((11|11)|30|12|12) 1

6
((11|02)|21|21|21) 5

6
((20|02)|21|21|12) − 1

3
((11|11)|21|21|12)

− 1

3
(30|12|12|11|11) 1

6
(21|21|21|11|02) 5

6
(21|21|20|12|02) − 1

3
(21|21|12|11|11)

+ 1

3
(30|12|12) − 1

3
(21|21|12) + 145

18
(21|21|12) + 1

9
(21|21|12)

− 1

27
(20|12) + 10

9
(30|12|12) − 2

81
(20|12)

+ 1

54
(30|02) + 5

9
(30|21|03) + 1

81
(30|02)

+ 1

135
(21|11) + 32

81
(20|12) + 2

405
(21|11)

+ 17

81
(21|11)

− 11

162
(30|02)

Table 29: Composed Weyl-ordered products from [Cγ, 21] = 0.

1

6
((20|20)|12|02) 5

6
((20|02)|30|02) − 1

3
((11|11)|30|02) 1

6
((20|20)|11|03) 1

6
((11|02)|30|11)

1

6
(20|20|12|02) 5

6
(30|20|02|02) − 1

3
(30|11|11|02) 1

6
(20|20|11|03) 1

6
(30|11|11|02)

− 2

9
(30|02) + 25

18
(30|02) + 7

18
(30|02) − 2

3
(21|11) − 1

3
(21|11)

− 2

9
(20|12) + 5

3
(21|11) − 1

3
(20|12) − 1

36
(30|02)

− 4

9
(21|11)

1

6
((11|02)|21|20) 5

6
((20|02)|21|11) − 1

3
((11|11)|21|11) 5

6
((20|02)|20|12) − 1

3
((11|11)|20|12)

1

6
(21|20|11|02) 5

6
(21|20|11|02) − 1

3
(21|11|11|11) 5

6
(20|20|12|02) − 1

3
(20|12|11|11)

− 1

6
(21|11) + 55

18
(21|11) + 1

18
(21|11) + 5

2
(20|12) + 1

6
(20|12)

− 1

9
(20|12) + 5

18
(30|02) + 10

9
(21|11)

+ 5

9
(20|12)

Table 30: Composed Weyl-ordered products from [C�, 21] = 0.
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A.8 Commutators and Interaction g

The main purpose of this section is to sketch in a detailed way the necessary steps when

calculating commutators which include the interaction g. From the previous considerations,

the main difference lies in the use of πk operators possessing the fundamental property

[πj, πk] = 0 , (A.183)

which simplifies many calculations, but since they are defined in terms of permutation operators

(see Section A.2), one has to carefully deal with them.

Let us start with the usual operators Bkl, including COM; these operators will act on the space

of all completely symmetric functions under permutation of two particles [1]. Firstly, we prove

that

B̃02 = res

�

3
�

a=1

π2
a

�

= B02 + 2g(g − 1)
�

k<l

1

x2
kl

. (A.184)

Let ψ be any such function. Starting from

πaψ = paψ + ig

3
�

b( �=a)

1

xab

sabψ

= paψ + ig

3
�

b( �=a)

1

xab

ψ , (A.185)

and applying again the operator πa on this result, we get successively:

π2
aψ = p2aψ+ ig

3
�

b( �=a)

pa

�

1

xab

ψ

�

+ ig

3
�

c( �=a)

1

xac

sac [paψ] + ig

3
�

c( �=a)

1

xac

sac



ig

3
�

b( �=a)

1

xab

ψ



 . (A.186)

Using the definition pα = −i∂α it is clear

pα

�

1

xβγ

�

=
i

x2
βγ

(δβα − δγα) . (A.187)

Applying this term by term in (A.186):

3
�

b( �=a)

pa

�

1

xab

ψ

�

= +i

3
�

b( �=a)

1

x2
ab

ψ +
3
�

b( �=a)

1

xab

pa (ψ) , (A.188)

3
�

c( �=a)

1

xac

sac [paψ] =
3
�

c( �=a)

1

xac

pc (ψ) , (A.189)

3
�

c( �=a)

1

xac

sac





3
�

b( �=a)

1

xab

ψ



 =
3
�

c( �=a)

1

xac

sac

�

1

xac

ψ

�

+
3
�

b�=c( �=a)

1

xac

sac

�

1

xab

ψ

�

= −

3
�

c( �=a)

1

x2
ac

ψ +
3
�

b�=c( �=a)

1

xac

1

xcb

ψ . (A.190)
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Inserting (A.188), (A.189) and (A.190) in (A.186):

π2
aψ = p2aψ − g

3
�

b( �=a)

1

x2
ab

ψ + ig

3
�

b( �=a)

pa + pb

xab

ψ + g2
3
�

c( �=a)

1

x2
ac

ψ − g2
3
�

b�=c( �=a)

1

xac

1

xcb

ψ

= p2aψ + g(g − 1)
3
�

b( �=a)

1

x2
ab

ψ + ig

3
�

b( �=a)

pa + pb

xab

ψ − g2
3
�

b�=c( �=a)

1

xac

1

xcb

ψ . (A.191)

Inserting this last result in the definition (A.184), and realizing that

3
�

a

3
�

b( �=a)

pa + pb

xab

ψ = 0 , (A.192)

3
�

a

3
�

b�=c( �=a)

1

xac

1

xcb

ψ = 0 , (A.193)

we finally obtain

B̃02ψ = B02ψ ++g(g − 1)
3
�

a

3
�

b�=a

1

x2
ab

ψ = B02ψ + 2g(g − 1)
3
�

a<b

1

x2
ab

ψ , (A.194)

=⇒ B̃02 = B02 + 2g(g − 1)
3
�

a<b

1

x2
ab

. (A.195)

For the rest of the operators the procedure is the same, just being more complicated in the

cases B̃03 and B̃12 because of the higher order derivatives.

As a second step, COM decoupling, the idea is practically the same: the old Bkl operators are

promoted to B̃kl, and the transformation is applied. The only difficulty lies in the cumbersome

algebraic calculations associated when expanding Weyl-ordered products, etc. but in principle

is the same as in the free case. We only show how this be done for the commutator
�

3̃0, 0̃3
�

.

Using the definitions

3̃0 = 30 , (A.196)

0̃3 = 03 + 3g(g − 1)
�

k<l

pk + pl

x2
kl

, (A.197)

we have:
�

3̃0, 0̃3
�

= [30, 03] + 3g(g − 1)
�

k<l

�

30,
pk + pl

x2
kl

�

. (A.198)

Let us focus on the term
�

30,
pk + pl

x2
kl

�

=
3
�

a=1

�

x3
a,
pk + pl

x2
kl

�

=
3
�

a=1

�

x3
a, pk + pl

� 1

x2
kl

= 3i
x2
k + x2

l

x2
kl

. (A.199)

This last result in eq. (A.198) yields:

�

3̃0, 0̃3
�

= [30, 03] + 9ig(g − 1)
�

k<l

x2
k + x2

l

x2
kl

= 9i(22) + 9i+ 9ig(g − 1)
�

k<l

x2
k + x2

l

x2
kl

. (A.200)
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The trick now consists in expressing the operator B22 in terms of tilde operators. Recalling the

definition of B22

B22 =
2

3
(21|01) +

1

6
(20|02) +

2

3
(12|10) +

1

3
(11|11)+

−
1

6
(20|01|01)−

2

3
(11|10|01)−

1

6
(10|10|02)+

+
1

6
(10|10|01|01)−

3

2
, (A.201)

it is clear, that only the terms (20|02), (12|10) and (10|10|02) will be modified:

1

6
(20|02) =

1

6
(2̃0|0̃2)−

g(g − 1)

3

�

a<b

2̃0

x2
ab

, (A.202)

2

3
(12|10) =

2

3
(1̃2|1̃0)−

2g(g − 1)

3

�

a<b

(xa + xb)(1̃0)

x2
ab

, (A.203)

−
1

6
(10|10|02) = −

1

6
(1̃0|1̃0|0̃2) +

g(g − 1)

3

�

a<b

(1̃0)2

x2
ab

. (A.204)

With these expressions, the commutator (A.200) now takes the form:

i−1
�

3̃0, 0̃3
�

= 6(2̃1|0̃1) +
3

2
(2̃0|0̃2) + 6(1̃2|1̃0) + 3(1̃1|1̃1)−

3

2
(2̃0|0̃1|0̃1)− 6(1̃1|1̃0|0̃1)

−
3

2
(1̃0|1̃0|0̃2) +

3

2
(1̃0|1̃0|0̃1|0̃1)−

27

2
+

− 3g(g − 1)
�

a<b

(2̃0)

x2
ab

− 6g(g − 1)
�

a<b

(xa + xb)(1̃0)

x2
ab

+ 3g(g − 1)
�

a<b

(1̃0)2

x2
ab

+ 9 + 9g(g − 1)
�

a<b

x2
a + x2

b

x2
ab

. (A.205)

Now, we need to prove that the extra terms appearing in the last expression either vanish or

combine into a constant. This will be achieved again by direct calculation:

9ig(g − 1)
3
�

a<b

x2
a + x2

b

x2
ab

= 9ig(g − 1)

�

x2
1 + x2

2

x2
12

+
x2
1 + x2

3

x2
13

+
x2
2 + x2

3

x2
23

�

, (A.206)

−3g(g − 1)
�

a<b

(2̃0)− (1̃0)2

x2
ab

= −6g(g − 1) (−x1x2 − x1x3 − x2x3)

�

1

x2
12

+
1

x2
13

+
1

x2
23

�

,

(A.207)

− 6g(g − 1)
�

a<b

(xa + xb)(1̃0)

x2
ab

= −6g(g − 1)

�

x1 + x2

x2
12

+
x1 + x3

x2
13

+
x2 + x3

x2
23

�

(x1 + x2 + x3)

= −6g(g − 1)

�

(x1 + x2)
2 + x3(x1 + x2)

x2
12

+

+
(x1 + x3)

2 + x2(x1 + x3)

x2
13

+
(x2 + x23)

2 + x1(x2 + x3)

x2
23

�

. (A.208)
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Take now only the terms proportional to x−2
12 :

−
6g(g − 1)

x2
12

�

(x1 + x2)
2 + x3(x1 + x2) + (−x1x2 − x1x3 − x2x3)

�

+ 9g(g − 1)
x2
1 + x2

2

x2
12

=

=
g(g − 1)

x2
12

�

9(x2
1 + x2

2)− 6(x1 + x2)
2 − 6x3(x1 + x2)− 6(−x1x2 − x1x3 − x2x3)

�

=
g(g − 1)

x2
12

�

9x2
1 + 9x2

2 − 6x2
1 − 12x1x2 − 6x2

2 + 6x1x2

�

=
g(g − 1)

x2
12

�

3x2
1 + 3x2

2 − 6x1x2

�

=
g(g − 1)

x2
12

· 3 (x1 − x2)
2 = 3g(g − 1) . (A.209)

Repeating the procedure for the contributions proportional to x−2
13 and x2

23, adding the respective

results with (A.209) and putting in (A.205), the final expression is:

i−1
�

3̃0, 0̃3
�

= 6(2̃1|0̃1) +
3

2
(2̃0|0̃2) + 6(1̃2|1̃0) + 3(1̃1|1̃1)−

3

2
(2̃0|0̃1|0̃1)− 6(1̃1|1̃0|0̃1)+

−
3

2
(1̃0|1̃0|0̃2) +

3

2
(1̃0|1̃0|0̃1|0̃1)−

9

2
+ 9g(g − 1) . (A.210)

From this point onwards, the treatment is exactly the same as in the case without interaction:

we decouple the center of mass and total momentum using the already known transformation

now with B̃kl operators:

* Level 1 operators:

(1̃0
�
) = (1̃0)

(0̃1
�
) = (0̃1)

(0̃0
�
) = (0̃0) = N = 3



















. (A.211)

* Level 2 operators:

(2̃0
�
) = (2̃0)−

1

3
(1̃0|1̃0)

(1̃1
�
) = (1̃1)−

1

3
(1̃0|0̃1)

(0̃2
�
) = (0̃2)−

1

3
(0̃1|0̃1)































. (A.212)

* Level 3 operators:

(3̃0
�
) = (3̃0)− (2̃0|1̃0) +

2

9
(1̃0|1̃0|1̃0)

(2̃1
�
) = (2̃1)−

1

3
(2̃0|0̃1)−

2

3
(1̃1|1̃0) +

2

9
(1̃0|1̃0|0̃1)

(1̃2
�
) = (1̃2)−

2

3
(1̃1|0̃1)−

1

3
(1̃0|0̃2) +

2

9
(1̃0|0̃1|0̃1)

(0̃3
�
) = (0̃3)− (0̃2|0̃1) +

2

9
(0̃1|0̃1|0̃1)















































. (A.213)
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[3̃0
�
, 0̃3

�
] = [3̃0, 0̃3]− [3̃0, (0̃2|0̃1)] +

2

9
· [3̃0, (0̃1|0̃1|0̃1)]

− [(2̃0|1̃0), 0̃3] + [(2̃0|1̃0), (0̃2|0̃1)]−
2

9
· [(2̃0|1̃0), (0̃1|0̃1|0̃1)]

+
2

9
· [(1̃0|1̃0|1̃0), 0̃3]−

2

9
· [(1̃0|1̃0|1̃0), (0̃2|0̃1)] +

4

81
· [(1̃0|1̃0|1̃0), (0̃1|0̃1|0̃1)] . (A.214)

The first commutator [3̃0, 0̃3] was calculated in (A.210); re-expressing this commutator in terms

of the new operators B̃�
kl, we arrive to one of the central results of the present work:

�

3̃0
�
, 0̃3

�
�

= −
3

2

�

2̃0
�
|0̃2

�
�

+ 3(1̃1
�
|1̃1

�
)− 4 + 9g(g − 1) . (A.215)

The treatment for
�

2̃1
�
, 1̃2

�
�

and the rest of the commutators is very similar and straightforward,

but lengthy due to algebraic difficulties.
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