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Abstract

On the hunt for a quantum advantage in the NISQ-dominated medium term, where
the existing quantum resources are influenced by noise and decoherence, variational
quantum algorithms (VQAs) [Cer+21] are generally considered the preferable strategy,
as leveraging classical computation power to optimize the output of the underlying
parametrized quantum circuit accounts for a limited number of qubits. However, for
NP-hard combinatorial optimization problems like the Knapsack Problem (KP) [MT90;
KPP04] where exactly solving instances of up to 100,000 variables is a matter of seconds
for state-of-the-art classical algorithms [MT90, S.2.10], achieving an improvement with
a VQA may still be unrealistic in the next years. One of the most promising ways of
creating industrial relevance for quantum computing in the near future might instead be
to enhance subroutines with the aid of VQAs instead of fully replacing well-established
classical algorithms, as this allows to hold on to tried and tested methods and to
make the number of employed qubits adjustable to the available hardware. This thesis
showcases a proof of concept for that. More precisely, a classical Branch and Bound
(B&B) [LD60; Cla99] is set up for the Knapsack Problem, which asks to find the
optimal selection of items to fill in a knapsack, featuring the largest possible aggregated
value that does not exceed a certain capacity given from the outset. This classical
framework is extended by introducing an alternative (quantum) lower bound in the
B&B via a Quantum Alternating Operator Ansatz (QAOA) [Had18] following the
Grover-mixer approach [BE20], in which the preparation of the initial state takes
care of preserving feasibility. The result is a hybrid quantum-classical B&B algorithm
(HQCBB). Due to its quantum-physical focus, classical components are in this work
configured in a basic manner while the major portion of the expenditure goes into the
design and the implementation of the QAOA. The state preparation in the Grover-mixer
approach is here given by the Quantum Tree Generation (QTG), a method that was
recently proposed as part of a new quantum algorithm for the Knapsack Problem
[Wil+23]. The QTG generates a superposition of all feasible states in N steps for
a given KP instance consisting of N elements; thereby, it admits for an exponential
speedup compared to the classical analogue. In total, the resulting QAOA comes with
a gate cost of O(N log(Wmax)2) on N + blogWmaxc + 1 qubits for a capacity Wmax.
Inspired by Wilkening et al. [Wil+23], a high-level simulator is developed for the QAOA
which enables to investigate problem instances with a qubit cost of 120 at largest in a
reasonable amount of time. It circumvents the computationally expensive simulation
of qubits and gate applications on a classical machine by performing the QTG in a
classical fashion and evaluating analytical formulae to emulate the QAOA circuits.
Simulations are conducted for both the new KP QAOA and the full HQCBB. The
expected behavior of an approximation ratio that increases with the circuit depth can
be confirmed to a good degree on randomly generated KP instances with different
numbers of variables and different capacity vs. total weight ratios. On the other hand,



the QTG-induced QAOA is found to be capable of beating the Greedy heuristic as its
classical opponent at various subproblem (qubit) sizes throughout the HQCBB run
for every set of considered instances. The top values around a 60% QAOA-surplus
can only rarely be observed, the majority of the classical threshold exceedings range
below 30%. Finally, it is verified that the partially improved lower bounds can actually
lead to a globally measurable effect in the form of a minor reduction in the number of
explored nodes.
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Introduction

By now, one can safely attest quantum computing to having emerged as one of the most
hyped trends at the interface of basic research and industry. People working in the
twilight zone between quantum physics and computer science find themselves confronted
with high hopes of business partners across all industry sectors - a development that
has increased rapidly in recent years: Between 2015 and 2020, the venture capital
invested in related research is estimated to have grown by an incredible 500% [RMO22].
This year, the German federal government decided on a funding of about €3 billion on
quantum technologies together with scientific organizations [Bil23; Qua23]. Not long
ago, neither the physics nor the computer science department seemed to feel comfortable
with devoting significant resources to quantum information research [ZJ22].

Quantum computing came up in the 1980’s, mainly driven by the edge-cutting works
of Benioff [Ben80] and Deutsch [Deu85]. The famous conjecture of Feynman [Fey82],
made when the field was still in its very infancy, that a quantum computer should, in
principle, be able to simulate any quantum system, was later proven by Lloyd [Llo96].
However, using a quantum system to simulate other quantum systems did not stay the
only intention for long - even before that proof was published, simple abstract examples
were constructed artificially to justify the new approach by demonstrating that there
are indeed cases in which a quantum computer can do better; most prominently the
Deutsch-Josza algorithm [DJ92] that achieves an exponential speedup when trying
to figure out whether a black-box function on an even number of N bits is either
constant (all inputs are mapped to the same value 0 or 1) or equally balanced (half
mapped to 0, half mapped to 1) while it is guaranteed that one of these options is
true. The algorithms developed by Shor [Sho94] and Grover [Gro96] address more
lifelike problems, namely finding the prime factorization of an integer and searching for
a marked element in a list, while achieving superpolynomial and quadratic speedups
compared to the best classical methods, respectively. The former even provides a
threat to commonly used public-key cryptography systems like the RSA, which is
exactly built on the conviction that such a factoring becomes intractable for very large
integers [RSA78]. However, the number of qubits needed to speak of a non-negligible
impact on the RSA is in the seven-digit magnitude [GE21] and therefore far beyond the
reach of any currently available resources. On the other hand, Grover [Gro96] himself
describes his algorithm to find the most application in database searches; furthermore,
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Introduction

it can be used in numerous other quantum algorithms to induce similar speedups
[Gro98; Amb04]. For being of potential relevance to the industry, Shor’s and Grover’s
publications served as catalysts for the general interest in the then still young field.
From that point onward, the number of proposed and invented quantum algorithms
has really exploded - currently, the Quantum Algorithm Zoo [Jor22] counts over 60
algorithms featuring different time savings and a wide range of applications, as well as
435 related papers; an introduction to and an overview of particularly influential ones
clustered in categories was provided by Montanaro [Mon15]. All of them are intended
to approach the overarching goal of achieving an advantage over the best classical
supercomputers, also known as quantum advantage, which is usually understood as
an improvement in terms of time or space on real-world applications. Transforming
fundamental research into practical use cases is in fact always a big deal, not only here
- with gallows humor, it is therefore sometimes also called the valley of death [ZJ22].

One main reason for why a significant part of the scientific community used to consider
quantum computers as mere science fiction [ZJ22] is that no quantum system is
fully free of decoherence [Sch05], imposing a major hurdle for executing large circuit
depths1 and building functional quantum computers in general [Lad+10].2 The aim
of mitigating the effects of decoherence and other types of noise that can appear in
quantum computers - like faulty states, faulty gates or faulty measurements - are
combined under the umbrella of Quantum Error Correction (QEC), which introduces
the concept of logical and physical qubits. Shor [Sho95] was the first to demonstrate
how a quantum error correction code can be set up in that regard via distributing the
information held by one logical qubit to nine strongly entangled physical qubits. The
presence of decoherence and noise hence enlarges the qubit requirements of working
quantum algorithms further and thereby pushes the fault-tolerant era several years or
even decades to the future. To give a rough insight in current hardware situation, it
should be mentioned that the first cloud-based quantum computer was made publicly
accessible in 2016 by IBM [Man21]. They are, as of 2023, the undisputed market leader
in the provision of qubit processors: Only one year after the magic barrier of 100 qubits
got exceeded by their Eagle chip [Dia22], IBM released the 433-qubit Osprey processor
in 2022 [CN22]. On their ”road to advantage” [IBM23], the next milestone is already
about to be passed - by the end of the year, Condor will boost the limit of what can be
done to significantly above 1,000 qubits. With switching to multiple chips and the aid
of quantum communication technologies until 2026, this roadmap envisages the way to
be paved for 10,000 - 100,000 qubits [IBM23]. Starting from 2022, investigations have
also been made to reduce circuit depths and work towards error correction [Joh22].
Actually mitigating noise shall however not be incorporated until next year [IBM23].

1The depth of a quantum circuit denotes the maximum length between the input and the output in
terms of gate layers executed in parallel.

2In a quantum computer, the manipulation of states in the form of operations and measurements
prevents a perfect isolation that would be necessary to avoid decoherence.
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Despite first QEC efforts, the current noisy intermediate scale quantum (NISQ) devices -
a term that can be traced back to Preskill [Pre18] - are believed to dominate the coming
years due to the additional qubit needs in fault-tolerant implementations as emphasized
above. While quantum supremacy - denoting the ability of quantum computers to
outperform classical state-of-the-art supercomputers on abstract mathematical tasks
(with potentially little physical meaning) - could already be confirmed with the available
hardware [Boi+18; Nei+18; Aru+19], similar evidence for a quantum advantage is
still pending. The central question thus is now whether and how this could already
be achieved in the medium term with the underlying NISQ resources. Any approach
in that regard must, in particular, cope with a bounded number of qubits as well
as a restricted gate fidelity due to inevitable noise and decoherence errors, limiting
the possible circuit depths. The most promising candidate is the class of variational
quantum algorithms (VQAs), denoting algorithms where a classical method is employed
to take care of optimizing the output of a parametrized quantum circuit. Leveraging
classical computation power arguably makes VQAs hybrid quantum-classical algorithms.
In their general review, Cerezo et al. [Cer+21] present the building blocks of VQAs,
provide an overview of their numerous applications - containing i.a. the search for
ground states of quantum systems, dynamical simulations, error correction, compilation,
machine learning, combinatorial optimization and mathematical applications - and
discuss current challenges like accuracy and efficiency. Therein, they understand VQAs
as ”[...] the quantum analogue of highly successful machine-learning methods, such as
neural networks” [Cer+21, p.625]. What makes the VQA-approach the leading strategy
for the NISQ period is that outsourcing the parameter optimization by drawing on
existing classical resources helps in capping the number of required qubits.

One of the VQA flagships is the Quantum Approximate Optimization Algorithm (QAOA)
proposed by Farhi, Goldstone, and Gutmann [FGG14], that essentially consists of a
quasi-adiabatic evolution composed of alternating applications of two different types of
parametrized unitaries. As the name suggests, the QAOA is a quantum algorithm that
approximates the solution to a given problem which is suitably encoded. The hope
for a medium-term quantum advantage made the QAOA research prosper; by now,
there exists a plethora of related literature. Some of the most important results are
that it admits universal quantum computation [Llo18; MBZ19], an asymptotic analyis
[Koß+22], the conducted investigations in strategies for actual implementations on
NISQ devices together with their associated performances [Zho+18; Qia+18; Pag+20;
Har+21], or exemplary estimations on the qubit requirements for a quantum speedup on
the basis of reasonable noise models [GM19]. Of special interest is also the generalized
version, called Quantum Alternating Operator Ansatz (QAOA) [Had18], that allows to
respect the constrained nature of problems properly.

On the hunt for a quantum advantage, a certain class of problems among the various
VQA applications has moved to the center of attention, accounting for their industrial
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relevance and the intractability on classical computers: NP-hard combinatorial opti-
mization problems. Any such problem asks to optimize a Boolean function on many
input variables, often with respect to some constraints. The interest in them is caused
by the widely believed but still unproven conviction that P 6= NP [For09], which
would imply that there is no algorithm solving any of them efficiently, i.e. without an
exponentially exploding time cost. A standard example for a constrained NP-hard
combinatorial optimization problem is the Knapsack Problem, which aims at packing a
knapsack with items of the utmost aggregated value while simultaneously not exceeding
its capacity [MT90; KPP04]. Thanks to the simplicity of its formulation and the wide
range of broad scenarios in which it can be identified, the Knapsack Problem is popular
in both classical and quantum studies. In his survey, Holst [Hol22] elaborates on three
different ideas to design a QAOA for the Knapsack Problem (meaning three different
ways to take care of the constraint) based on [Roc+20; GH19; MW19] and compares
their approximation qualities, particularly by evaluating their dependencies on different
construction parameters. What makes the Knapsack Problem interesting for us as a
representative combinatorial optimization problem in this work is that Wilkening et al.
[Wil+23] recently proposed a new quantum algorithm for it, a part of which - called
Quantum Tree Generation (QTG) - is suited to be extracted and recycled to set up a
QAOA following the Grover-mixer approach [BE20] where constraints are incorporated
via the initial state preparation.

For problems like the Knapsack Problem where instances consisting of up to 100,000
variables can be solved classically within a range of a few seconds [MT90, S.2.10], it
is pretty involved to come up with a quantum algorithm that achieves a quantum
advantage at all - under the current restricted and error-prone circumstances this seems
rather impossible. Although VQAs shift an essential part of the effort to comparably
cheap classical infrastructure, the qubit resources required for outperforming such
sophisticated classical algorithms that have been in active development for over 50
years now are - at least to this point in time - clearly not within reach. An auspicious
strategy to tackle this challenge is to build on the VQA idea of combining quantum
and classical computation but to turn the tables: Instead of starting from the quantum
algorithmic perspective and relinquishing certain parts to a classical system, why not
trying to enhance a well-established classical algorithm by enhancing a subroutine
in a quantum fashion? Such an approach is e.g. taken by Svensson et al. [Sve+21].
Similarly, we will impose this concept on the Branch-and-Bound algorithm (B&B)
[LD60; Cla99], which is a standard classical technique for exactly solving combinatorial
optimization problems that generates a tree-structured arrangement of subproblems
by iteratively assigning variables and rejecting partial configurations according to
certain rules. Our target picture is to construct a Branch and Bound for the Knapsack
Problem that is extended by a QTG-induced QAOA, to ultimately end up with a
hybrid quantum-classical B&B algorithm (HQCBB) for which the number of necessary
qubits can be adjusted to the available hardware. How this may be done in detail is to
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be worked out. Nevertheless, I want to emphasize at this early stage that this thesis
has a quantum-physical focus, which is why more effort will be put in designing the
QAOA compared to the rather basic classical components. Irrespective of that, keeping
the full classical computation power by employing tried and tested methods might, in
combination with a configurable qubit requirement, in fact be the most promising way
for quantum computing to gain actual industrial relevance in the medium term.

Ideally, our final HQCBB is capable of improving its classical origin on a measurable
scale. Regardless of the best case scenario, the HQCBB will inherit a non-material value
by establishing a proof of concept for enhancing well-performing classical algorithms
with the use of VQAs. Besides, a subordinate second part that is of scientific interest
for the quantum computing community was already implicitly mentioned above: the
construction of a new constraint-respecting QAOA for the Knapsack Problem, induced
by a revolutionary procedure that prepares the feasible states.

This work consists of three parts. In the first, we will lay the theoretical foundation
for constructing our algorithm; more specifically, after reviewing basic concepts like
complexity theory and a formal description of combinatorial optimization problems
as well as the Knapsack Problem in particular in Chapter 1, we will turn to the
two algorithms that are to be employed. Section 2.1 discusses Branch and Bound as
the classical framework and its building blocks together with common configurations.
In Section 2.2 we will dive deeply into the subject of QAOA - including a rigorous
derivation from an adiabatic evolution, an explanation of the original version by
Farhi, Goldstone, and Gutmann [FGG14], and a presentation of the Grover-mixer
approach [BE20] embedded in a discussion of the generalization suggested by Hadfield
[Had18]. Part II can be considered central, as this is where the concrete idea for our
algorithm is developed (Chapter 3) and both classical and quantum part are worked
out explicitly (Chapter 4 and Chapter 5, respectively). Finally, we will elaborate on
the implementation of our designed QAOA and visualize the different components
as circuits in Chapter 6 as well as perform simulations in Chapter 7, making up the
final part. Both of them have their reason to be of fundamental importance for the
thesis: Concerning the implementation, translating the steps to unitary operations
and decomposing them into a sequence of known quantum gates really generates the
essence of a quantum algorithm, as it enables to categorize and assess its complexity in
time and space and thereby establishes comparability. On the other hand, simulating
qubits and the application of gates on a classical machine is computationally very
expensive. In order to not be governed by severe limits on the problem size, I developed
a simulator inspired by Wilkening et al. [Wil+23], which circumvents the conventional
techniques. The result is specifically tailored to the Knapsack Problem and allows, as
we will see, to emulate the QAOA circuits on more than 100 qubits at its best.
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CHAPTER 1.

Basic Concepts

1.1. Complexity Theory

As described in the introduction, the presumption - or at least the hope - that quantum
computers will provide a real advantage over classical computers is widely spread. As
scientists we need something - some measure - to be able to quantitatively distinguish
the capabilities of quantum computers compared to their classical analogs. However,
this field of studies is not the first wishing to estimate the resources needed to solve a
computational problem. How to, for example, decide which problem out of a given list
is the easiest one in terms of solvability, and which the most difficult? Or, alternatively,
which algorithm should be used for a given problem to solve it most efficiently in
terms of computing time? The theoretical framework equipping computer scientists,
physicists and mathematicians with the necessary toolkit to answer these types of
questions is the complexity theory.

Solving a problem is obviously not always equally difficult; matrix inversion for instance
is way easier if the given matrix is diagonal. This is why one may stumble across
terms best-case complexity and worst-case complexity, referring to the time needed to
find solutions to the easiest and hardest instances of a problem, respectively (as far as
these properties can be assigned uniquely). As different algorithms may well perform
differently on the same problem but with different sizes, one is generally interested
in the asymptotic runtime of an algorithm. In fact, we don’t need the full relation
between an algorithm and its runtime or memory needs - information about the leading
term, given without any prefactors, is sufficient to benchmark it. This is formalized by
the so-called O-notation: For a function f : R→ R we define

O(f) = {g : R→ R : ∃ c, x0 ∈ R s.t. 0 ≤ g(x) ≤ cf(x) ∀x ≥ x0}.
Suppose the size of a problem is given by an integer n ∈ N which also characterizes the
runtime f(n). If there is another integer k ∈ N such that f ∈ O(nk), i.e. the algorithm
has polynomial runtime, one says the problem is efficiently solvable. Note that not any
algorithm of polynomial runtime necessarily needs to be efficient in practical means.
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But what if we want to make a general statement about a problem, e.g. that it can
indeed be solved in polynomial time, or - even stronger - that there cannot be an
algorithm achieving that? Even though any working algorithm provides an upper
bound on the complexity of the considered problem, the chosen algorithm might just
be comparatively bad. Hence, we aim for an algorithm-independent framework for
describing the difficulty to solve a problem. Introducing the notion of complexity classes
enables us of doing so: By definition, all problems contained in the same complexity
class are comparable in terms of the resources required to solve them. The most
prominent example of a complexity class is P (abbreviating ”polynomial”), containing
all problems that can be deterministically solved in polynomial time, i.e. are efficiently
solvable. The next class - central for the purposes of this thesis - is NP (shortcut for
”non-deterministic polynomial”). The proper definition of NP may not be that intuitive:
It contains all problems to which a non-deterministic computer can find a solution
in polynomial time. A non-deterministic computer (or Turing machine) is capable of
not only executing single instructions like ”Add numbers a and b” but of doing things
like ”Add a and b or subtract them” in parallel. Iterating these multiple operations
leads to an exponentially growing tree instead of only a single path of instructions.
The following is another often used definition of NP, which is probably easier to grasp:
If provided a solution to a problem in NP, a usual (deterministic) computer is able to
verify it in polynomial time. A standard example is prime factorization - while finding
such a factorization into prime numbers is hard, verifying the correctness of a solution
couldn’t be simpler as the factors have just to be multiplied.

A sophisticated notion of what is meant by a ”problem” in this thesis will follow in the
next section. However, for a very high-level type of problem it makes sense to already
be introduced at this stage.

Definition 1.1. A decision problem is a problem that can be fully answered by a ”yes”
or a ”no”.

In fact, any ”ordinary” problem may be easily transformed into an associated decision
problem by comparing the solution (its value) to a certain threshold value specified in
advance.

Definition 1.2. A decision problem P̃ is called to be reducible in case there exists
another decision problem P 6= P̃ such that P̃ can be transformed into P in polynomial
time, denoted as P̃ ≤ P . This is, solving P̃ is equivalent to solving P up to a
polynomial-time overhead. One says, P̃ can be reduced to P .

This concept can now be used to introduce an important subclass of NP.
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Definition 1.3. A decision problem P is called NP-complete if

(i) P ∈ NP and

(ii) P̃ ≤ P ∀P̃ ∈ NP decision problems.

Another central and strongly related class is defined as follows.

Definition 1.4. A decision problem P is called NP-hard if it satisfies property (ii) of
Definition 1.3, i.e. if every (other) decision problem in NP can be reduced to P .
For an ordinary problem being NP-hard1 is defined to mean that the corresponding
decision problem is NP-complete.

Due to the requirement of only obeying property (ii) in Definition 1.3, NP-hard
problems are often referred to as being at least as difficult as the hardest problem
instances in NP. Even though the expression for that class may be a bit misleading,
Definition 1.4 also implies that an NP-hard problem does not necessarily have to also
be contained in NP.

The following theorem can be understood as having provided the initial ignition for
today’s wide-spread interest on both scientific and industrial interest in NP-hard and
NP-complete problems.

Theorem 1.5 (Cook’s Theorem). The Boolean satisfiability problem, asking to deter-
mine whether a given Boolean expression can be satisfied2, is NP-complete. Here, a
Boolean expression consists of a logical combination of variables, also called literals,
each of which can only be assigned the value ”true” or ”false”. It is satisfiable if there
exists a choice of variables making the whole statement true.

Proof. A proof of this theorem can be found in the original work by Cook [Coo71].

One main reason for being considered so groundbreaking is that Theorem 1.5 laid the
foundation for a landmark work by Karp [Kar72] in which he used Cook’s theorem to
deduce NP-completeness of 21 combinatorial and graph-theoretical (decision) problems
by obtaining each of them via an iterative reduction from the Boolean satisfiability

1Note that complexity classes themselves are printed in bold, e.g. NP, whereas the property of a
problem being contained in that class is written without bold letters.

2Corresponding to a ”yes” in terms of a decision problem as in Definition 1.1.
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problem. This process ends up in a tree structure where every of these 21 problems
represents a node in the tree, having the problem it is derived from as its respective
parent node (the Boolean satisfiability problem therefore corresponds to the root node).
In this picture, all problems sitting on the same branch of the resulting tree can be
considered related, providing an instructive visualization of what NP-completeness
means in practice. The problems addressed in [Kar72] are also known as Karp’s 21
(NP-complete) problems. As it was one of the first, if not the first, to demonstrate the
computational intractability of many standard problems in computer science on the
large scale, Karp’s paper was responsible for taking the popularity of this research area
to a new level.

NP-complete problems are of special interest as solving one efficiently is sufficient to
infer that all problems in NP are actually efficiently solvable, by which P = NP
would be implied. Instead of describing how large the impact of such an algorithm
would be, I may rather refer to the Clay Mathematics Institute which listed the ”P
versus NP” problem among the seven Millennium Prize Problems each worth one
million US dollars. To provide one example, let me pick up again what was said in the
introduction: Modern cryptography is based on the conjecture that there are indeed
problems that cannot be solved in polynomial time (see e.g. the RSA cryptosystem
which uses the hardness of prime factorization [RSA78]). In fact, surprisingly little is
known about how complexity classes are related, making the assignment of algorithms
to specific classes being often based on unproven assumptions.

With the branch of new opportunities opened by quantum computing, the need of
an extended complexity theory was recognized. For this sake, a new complexity class
has been introduced: BQP (shorthand for ”bounded-error quantum polynomial”),
consisting of all problems that can be efficiently solved on a quantum computer, i.e. a
quantum algorithm is able to find a solution in polynomial time, allowing a bounded
probability of error, e.g. 1/3. Thereby it is the analogue of the classical complexity
class BPP (”bounded-error probabilistic polynomial”) also characterized by a bounded
(but non-zero) error probability. The specific choice on the permitted failure probability
however is arbitrary as it may be decreased to any finite non-zero value by running the
respective algorithm multiple times, implied by the Chernoff bound [Che52]. Prime
factorization can again be exploited as an example problem contained in BQP thanks
to Shor’s algorithm [Sho94]. Analogous to P ⊆ BPP (as a deterministic machine is a
special case of a probabilistic machine), a fundamental relation in quantum complexity
theory is P ⊆ BQP, expressing the finding that any classical circuit can also be
simulated on a quantum computer. That can be traced back to replacing any classical
circuit by an equivalent circuit consisting of reversible operations only, mainly due to
being able to simulate the NAND gate using the so-called Toffoli gate [NC10].
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1.2. Combinatorial Optimization Problems

The Knapsack problem corresponds to a certain type of problems, namely combinatorial
optimization problems. The characterizing property shared by all combinatorial opti-
mization problems is their discrete domain, meaning that we need to find an optimal
object out of countable many finite competitive objects at the end of the day [Coo+].
Clearly, the set of feasible solutions badly depends on the investigated problem in
terms of structure and cardinality.

1.2.1. Notation

For the sake of conciseness and comparability, a bunch of definitions and a kind of
mathematical formalism shall be introduced to describe combinatorial optimization
problems, heavily borrowing notation from [Bin22].

Definition 1.6. A combinatorial optimization problem can be uniquely characterized
by five components, i.e. is a quintuple

COP :=
Ä
N, {cj}a

j=1, {Cj}a
j=1, {Dk}b

k=1, ext
ä

(1.2.1)

where N ∈ N describes the size of the problem; cj ∈ R+ for j ∈ {1, ..., a} denotes
the cost or profit of the corresponding clause Cj : {0, 1}N → {0, 1}; the maps Dk :
{0, 1}N → {0, 1} for k ∈ {1, ..., b} however represent the constraints of the combinatorial
optimization problem COP; ext ∈ {min, max} finally specifies the type of the problem,
i.e. whether it asks for a minimization of costs or a maximization of profits.
A typical special case of combinatorial optimization problem is the unconstrained one
where there are no constraints at all, i.e. {Dk}b

k=1 = ∅ or, equivalently, b = 0.

To be more concrete, the size of a combinatorial optimization problem is given by the
number of bits required to formulate it quantitatively (the number of bits passed as
arguments to the clauses and constraints). Instead of writing z ≡ (z1, ..., zN) where zi

for i ∈ {1, ..., N} represents a single bit, one typically combines them to a bit string
z ≡ z1 · · · zN such that

Cj(z1, ..., zN) ≡ Cj(z) ≡ C(z1 · · · zN) for j ∈ {1, ..., a},

and analogously for the constraints. A clause Cj is said to be satisfied by a bit string
z ∈ {0, 1}N if Cj(z) = 1, otherwise it is called unsatisfied. Again, the same naturally
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holds for the constraints. Note that we assume all profits cj, j ∈ {1, ..., a}, to be
integers; however, this is not a necessary requirement, we could have also introduced
them more generally as cj ∈ R+.

Definition 1.7. The objective function of a combinatorial optimization problem COP
is given by

C : {0, 1}N → N, z 7→ C(z) =
a∑

j=1
cj · Cj(z). (1.2.2)

The objective function of a combinatorial optimization problem is often understood
as its main ingredient. The following terminology provides a higher-level notion of
problems as we understand them:

Definition 1.8. An integer linear program (ILP) is a problem in which the variables
are all restricted to be integers and the objective function as well as the constraints
are linear (except for the constraints enforcing the variables to be integers).

The upcoming two definitions will equip us with an improved capability of discussing
solutions to combinatorial optimization problems, especially in the case of a constrained
COP.

Definition 1.9. A bit string z is called a feasible solution to a COP defined as in
Definition 1.6 if

Dk(z) = 0 ∀k ∈ {1, ..., b},

meaning that none of the constraints happens to be violated by z. The set of all
feasible solutions to the COP shall be depicted as

feas(COP) := {z ∈ {0, 1}N : Dk(z) = 0 ∀k ∈ {1, ..., b}}. (1.2.3)

Naturally, a COP is said to be infeasible in case feas(COP) = ∅.

Definition 1.10. A bit string z∗ is called an optimal solution to a COP defined as in
Definition 1.6 if

(i) z∗ is a feasible solution to COP, i.e. z∗ ∈ feas(COP), and

(ii) z∗ = ext arg
z∈{0,1}N

C(z),
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which can be streamlined to

z∗ = ext arg
z∈feas(COP)

C(z) = ext arg
z∈feas(COP)

a∑
j=1

cj · Cj(z),

meaning that z∗ minimizes the cost or maximizes the profit resulting in a corresponding
extremization of the objective function.
Accordingly, the set of the potentially many optimal solutions to COP shall be denoted
by

opt(COP) :=
®
z : z = ext arg

z∈feas(COP)
C(z)

´
. (1.2.4)

Obviously, finding optimal solutions to a given COP is the holy grail of mathematical
optimization. It is clear that the following heuristic or algorithm solves any COP to
optimality.

Definition 1.11. Given a COP as in Definition 1.6, a brute-force search systematically
enumerates all bit strings z ∈ {0, 1}N , checks whether each such candidate satisfies the
constraints and, if yes, caches the corresponding bit string together with its associated
objective-function value.

Since the search space of a problem formulated in N binary variables has 2N possible
candidates, the brute-force search is of complexity O(2N ). As we will see, searching for
optimal solutions of a given COP can easily become an intractable task, which itself
can be understood as the most fundamental motivation for this thesis and the idea of
exploiting quantum computation in mathematical optimization in general.

As kind of a marginal note, I will lastly show how maximization and minimization
problems3 can easily be transformed into each other. Naturally, the clauses need to be
reversed in some sense. The constraints however stay unchanged as we could otherwise
not speak of the same problem only being transformed in the wanted extremum
anymore. This is, for COP as in Definition 1.6,

COP 7→ COP :=
Ä
N, {cj}a

j=1, {1− Cj}a
j=1, {Dk}b

k=1, ext
ä

with

ext ≡
®

min , if ext = max
max , if ext = min

3Here and here after, when speaking of a ”problem” we actually mean a combinatorial optimization
problem.
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describes the relation between formulating a combinatorial optimization problem as
maximization problem versus formulating it as a minimization problem. As COP
and COP by construction do not differ in terms of constraints, we can directly infer
feas(COP) = feas(COP). Even further, using Eq. (1.2.4) it is easy to verify that a
(feasible) solution z∗ to COP is optimal if and only if z∗ is also an optimal solution to
COP, meaning opt(COP) = opt(COP). This in turn implies that COP and COP are
fully equivalent.

1.2.2. Quantum Mechanical Version

So far, our notion of combinatorial optimization problems is merely classical. However,
if it was not possible to tackle those problems using a quantum computer, i.e. leveraging
quantum mechanics, this thesis would have no reason d’être. And indeed, there is a
general approach for addressing a COP with quantum computers for which it makes
sense to be presented at this stage.

When making the transition from classical to quantum computation, every (classical)
bit zn is replaced by a qubit |zn〉. A single-qubit system shall be denoted by q ∼= C2,
implying that an N -qubit system may be represented as

q
N ≡ q

⊗N =
N⊗

n=1
q ∼=

N⊗
n=1

C2 ∼= C2N

.

Accordingly, its computational basis is given by

{|z〉 ≡ |z1 · · · zN〉 : zn ∈ {0, 1} ∀n ∈ {1, ..., N}} =
¶
|z〉 : z ∈ {0, 1}N

©
.

There is actually a second way of labeling the computational basis states to be mentioned
that is totally equal in terms of the frequency of use and that we will encounter again
later: An element in the computational basis may equivalently be referred to via the
natural number encoded in the bit string z ≡ z1 · · · zN , namely

z1 · · · zN ≡ z ≡
N∑

n=1
2N−nzn, (1.2.5)

also known as binary representation. In this sense, the computational basis of an
N -qubit system q

N reads¶
|0〉 , ..., |2N − 1〉

©
=
¶
|z〉 : z ∈

¶
0, ..., 2N − 1

©©
.

The idea now is to treat the objective function C of a given COP as in Definition 1.6
as a Hamiltonian acting on the N -qubit system q

N , i.e. understand it essentially as a
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self-adjoint operator acting on the Hilbert space of the qubit system instead of a map
{0, 1}N → N as in Definition 1.7. This objective Hamiltonian is generally designed
such that it is diagonal in the computational basis:

C |z〉 := C(z) |z〉 ∀z ∈ {0, 1}N . (1.2.6)

Thereby, the problem of finding an optimal solution to a given COP with objective
function C : {0, 1}N → N translates to the quantum mechanical context as finding
an extremal eigenstate of the restricted operator C|F with C as in Eq. (1.2.6) and F
being defined via:

Definition 1.12. The feasible solution space (also called feasible subspace) of an
optimization problem COP is given by

F := span{|z〉 : z ∈ feas(COP)} ⊆ q
N . (1.2.7)

Analogously:

Definition 1.13. The optimal solution space of an optimization problem COP is given
by

Fopt := span{|z〉 : z ∈ opt(COP)} ⊆ F. (1.2.8)

Fopt describes the eigenspace of C|F corresponding to the extremal eigenvalues.

Concerning the possible constraints of a combinatorial optimization problem, transfer-
ring them to a quantum mechanical fashion is only straight forward when softcoding
them via a translation to additional objective function clauses with penalties that make
violating them energetically unfavorable (see also Section 2.2.2). Roughly, this is due to
using only the information provided by the objective function to build a Hamiltonian
for describing the problem at hand and determining the evolution of the system.4 The
type of the problem, i.e. whether it asks for the maximization or the minimization of
the objective function, can however be simply incorporated by choosing the sign of the
objective Hamiltonian accordingly.

4As usual when operating on the level of quantum mechanics, the term ”determining” has to be
taken with a grain of salt as it is not a deterministic but a probabilistic theory.
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1.3. The Knapsack Problem

This section aims at formally introducing the problem for which our algorithm will be
built. It is a standard example of a combinatorial optimization problem and can be
read up in more or less detail in standard literature. I confine myself to only discuss
the formulation that is to be used in the thesis and embed it in some accompanying
information, as it is a pretty rich subject on its own, including diverse variants and a
multitude of different solving ideas, approaches and techniques. The appropriate place
and time to talk about classical results and, especially, bounds is when constructing our
algorithms explicitly, since only some of the developments achieved over the last decades
will actually be exploited by us. Even among standard combinatorial optimization
problems (assuming that there is such a more or less sharply defined list) the so-called
Knapsack Problem occupies a special role. It can even be called popular for two main
reasons: first and foremost, its ridiculous structural simplicity and, on the other hand,
its excellent applicability to daily-life situations.

Imagine you are a school kid packing all the heavy books you need for the subjects
today before you leave; however, your satchel can only carry a limited weight - the
task to optimize this situation, i.e. to select the best combination of books (assuming
some subjects are more important than others) without simultaneously overloading
your school bag, really materializes the Knapsack Problem.

Definition 1.14. The Knapsack Problem (KP) is an ILP (cf. Definition 1.8) consisting
of a list of N items such that every item is assigned two positive integers, namely a
profit and a weight, and a knapsack which is associated with a capacity. It is then
defined as follows:

maximize P (x) :=
N∑

j=1
pjxj (1.3.1)

subject to W (x) :=
N∑

j=1
wjxj ≤ Wmax, (1.3.2)

xj ∈ {0, 1} ∀j ∈ N ≡ {1, ..., N} (1.3.3)

where the pj ∈ N are called profits and the wj ∈ N are referred to as weights, Wmax
denotes the capacity of the knapsack and j ∈ N indicates the item such that

x ≡ x1 · · ·xN and xj :=
®

1 , if item j is selected
0 , otherwise.

Indeed, Eqs. (1.3.1) to (1.3.3) represent the so-called canonical form of an integer
linear program. To put it in the shape of Definition 1.6, the Knapsack Problem as

Page 16 of 141



Chapter 1. Basic Concepts

combinatorial optimization problem can be written as

KP =
Ä
N, {pj}N

j=1, {xj}N
j=1, W

′, max
ä

(1.3.4)

where

W ′(x) :=
®

0 , if W (x) ≤ Wmax

1 , otherwise.

in accordance with Definitions 1.6 and 1.9.

As argued by Martello and Toth [MT90, S.2.1], we are indeed justified to make the
following three assumptions without loss of generality5:

(i) The profits pj and weights wj for j ∈ N as well as the capacity Wmax are
non-negative integers, i.e. pj, wj,Wmax ∈ N ∀j ∈ N.

(ii) The sum of all weights is larger than the capacity, i.e. ∑N
j=1 wj > Wmax.

(iii) No single weight is larger than the capacity, i.e. wj ≤ Wmax ∀j ∈ N.

The latter two assumptions ensure that the Knapsack Problem stated as in Defini-
tion 1.14 is providing just as much information as necessary. This is, there is no other
KP instance which can be considered equivalent in the sense of the number of variables
to be optimized while actually being reduced by those variables that need to be trivially
set to secure feasibility at all. For instance, suppose assumption (ii) is violated, the
optimal solution in this case is trivially given by xj = 1 ∀j ∈ N (even selecting all items
is not overfilling the knapsack). On the other hand, if assumption (iii) is not satisfied,
any optimal solution must agree on xj = 0 for those j ∈ N for which wj > Wmax in
order to preserve feasibility (cf. Eq. (1.2.3)). Verifying that assumption (i) can be made
safely is a bit more involved. More specifically, at least concerning the non-negativity -
facing fractions instead of integers can be circumvented by multiplying through by a
proper factor. For the non-negativity I will briefly reconstruct the four steps described
by Martello and Toth [MT90] (inspired by Glover [Glo65]) how to transform a KP
instance with negative profits and/or weights into our standard version as presented in
Definition 1.14:

(1) Set xj = 0 for each j ∈ N0 := {j ∈ N : pj ≤ 0 and wj ≥ 0}.

(2) Set xj = 1 for each j ∈ N1 := {j ∈ N : pj ≥ 0 and wj ≤ 0}.

5Hereafter referred to as ”w.l.o.g.”.
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(3) Define a set of new binary variables y1, ..., yN ∈ {0, 1} via

yj :=
®

1− xj , if j ∈ N− := {j ∈ N : pj < 0 and wj < 0}
xj , if j ∈ N+ := {j ∈ N : pj > 0 and wj > 0}

while also performing the following rescaling of profits and weights, respectively:

pj :=
®
−pj , if j ∈ N−

pj , if j ∈ N+ and wj :=
®
−wj , if j ∈ N−

wj , if j ∈ N+.

(4) Finally, instead of solving the original Knapsack Problem instance containing
negative profits and/or weights, solve the following COP

maximize P (y) :=
∑

j∈N−∪N+

pjyj +
∑

j∈N1∪N−

pj

subject to W (y) :=
∑

j∈N−∪N+

wjyj ≤ Wmax −
∑

j∈N1∪N−

wj =: Wmax,

yj ∈ {0, 1} ∀j ∈ N− ∪N+,

which can be interpreted as an equivalent ordinary Knapsack Problem instance
in the sense of Definition 1.14 with non-negative profits and weights, having some
offset in the objective function as well as an correspondingly enlarged capacity6.

As summarized by Eq. (1.3.4), KP has just as many clauses as there are binary variables
needed to formulate the problem (namely the number of items). The aforementioned
structural simplicity of KP can also be read off Eq. (1.3.4), more specifically via the
trivial clauses just being given by the respective bits on the one hand and the property
of KP having only one constraint on the other. It is indeed a bit unfortunate that,
unlike in Section 1.2.1, bit strings are denoted by x instead of z, profits are labeled pj

instead of cj and the objective function of KP (given in Eq. (1.3.1)) is referred to as
P instead of C. I chose this deviating notation to be in line with how the Knapsack
Problem is usually formulated in the literature.

Just in order to give you a second real-life example relatable to the Knapsack Problem:
For those whose school days were already to long ago and are more comfortable with
assets, investments and portfolios: Suppose you have got a certain capital to extend or
create your portfolio and you are considering a fixed number of investments to choose
between. Every investment is assigned a cost and a profit you expect to obtain from it.
When deciding on which investments to make in order to achieve the maximum profit

6The new capacity Wmax is indeed never smaller than the old, Wmax, since wj ≤ 0 ∀j ∈ N1 ∪N−.
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with simultaneously not exceeding your financial leeway, you constructed an instance
of the Knapsack Problem.

To be more rigorous, KP as defined in Eq. (1.3.4) should rather be called something
like single 0-1 Knapsack Problem to be able to distinguish it properly from the various
other variants that exist of the problem. As this longer name suggests, there is also a
multiple Knapsack Problem where the items can be packed in more than one knapsack.
The additional term ”0-1” is related to the possible values of the variables x1, ..., xN ,
meaning in the context that items can only be either selected or left out. Allowing
multiple instances of every item to be packed in the knapsack(s) gives the multiple-
choice Knapsack Problem. When restricting this number of copies permitted (either
equally for all items or not) to a value greater than one but smaller than infinity
we arrive at the bounded Knapsack Problem. Another even simpler variant which is
sometimes considered independent - and therefore also carries a not-knapsack related
name - arises when pj = wj for every item, called Subset-sum Problem. A detailed
analysis of each of these variants is e.g. provided by Martello and Toth [MT90]. Even
despite this bunch of different variations we will stick to referring to the problem
specified in Definition 1.14 as Knapsack Problem as it is the only version of interest
for this thesis.

The simplicity of KP as in Definition 1.14 makes it indeed interesting both for the
theoretical and the practical side. Theorists mainly consider it relevant due to the
following reason: Being able to find optimal solutions to the Knapsack Problem may
aid in solving more involved combinatorial optimization problems as the structure
of some version of the Knapsack Problem can often be found in subproblems. From
the practical point of view, the Knapsack Problem is worth investigating since it is
suitable to model diverse industrial situations as is indicated by the second descriptive
KP example given above. Many advanced industry KP-applications such as cutting
stock, financial decision problems like capital budgeting or portfolio selection as well
as asset-backed securitization (just to name a few) are discussed by Kellerer, Pferschy,
and Pisinger [KPP04, Ch.15].

Due to exactly this simplicity, it may be tempering to underestimate the complexity of
solving the Knapsack Problem to optimality. The number of different bit strings to
be compared in a brute-force approach (i.e. walk through every possible combination
and pick the best iut of those satisfying the constraint) is 2N for a set of N items.
Hence, taking up the thought game in [MT90, p.1], even a hypothetical computer that
is capable of checking one billion bit strings per second would need over 30 years for a
set of 60 items, about ten centuries for 65 items and the computing time for 88 items
is already in the order of the age of the universe. However, classical algorithms that
are specifically designed for or adapted to the Knapsack Problem are able to solve the
most problem instances within seconds, even those with extremely large amounts of
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items up to 100,000 [MT90, S.2.10].

What is striking about the Knapsack Problem is its simple-looking formulation whereas
actually being an NP-hard optimization problem (cf. Section 1.1).

Theorem 1.15. The Knapsack Problem as it is formulated in Definition 1.14 is
NP-hard. Its corresponding decision problem is NP-complete.

Proof. In fact, the Knapsack Problem is one of Karp’s 21 problems (cf. Section 1.1)
[Kar72]. However, Karp’s definition of the Knapsack Problem differs from the one in
Definition 1.14 - it is indeed closer related to what we call the Subset-sum Problem.
Therefore, we cannot just refer to his proof of NP-completeness, which is itself based
on Cook’s theorem (cf. Theorem 1.5). But nevertheless, what we are able to do is
leveraging his proof for another NP-complete problem in the list, namely the Partition
Problem. This approach is inspired by Martello and Toth [MT90, S.1.3].
Formulated as a decision problem (cf. Definition 1.1), the Partition Problem asks
whether there exists a subset S ⊆ N̄ ≡ {1, ..., N} for a list of N positive integers
s1, ..., sN such that ∑

j∈S sj = ∑
j∈N̄\S sj (i.e. the subset S divides the total sum∑

j∈N̄ sj in half, meaning that the answer is ”no” if the sj, j ∈ N̄ do not sum to an even
number). For this problem we can indeed refer to the proof given by Karp [Kar72].
The next intermediate problem whose NP-completeness is to be derived is the Subset-
sum Problem. The task of its decision version is to determine whether there is a subset
S ⊆ N̄ = {1, ..., N} satisfying ∑

j∈S sj ≥ t while simultaneously ∑
j∈S sj ≤ c for N + 2

positive integers s1, ..., sN , t (threshold) and c (capacity).7 As the Subset-sum Problem
can be easily transformed into an equivalent instance of the Partition Problem by
setting t = c = 1/2 ·∑N

j=1 sj (which especially is a polynomial-runtime transformation),
the Subset-sum Problem also needs to be NP-complete.
Finally, consider KP formulated as a decision problem, asking for a subset S ⊆ N̄ =
{1, ..., N} obeying∑

j∈S

pj ≥ T and
∑
j∈S

wj ≤ Wmax with T ∈ N (threshold).

As indicated above, starting from that the Subset-sum decision problem is obtained
by choosing pj = wj ∀j ∈ {1, ..., N}, meaning that it is a particular case of the
decision version of the Knapsack Problem. Hence, we can infer the NP-completeness
of the latter. This in turn is equivalent to the Knapsack Problem being NP-hard (cf.
Definition 1.4).

7Note that the Subset-sum Problem is often introduced as a decision problem solely. In that case,
threshold and capacity are usually chosen as t = c, meaning that the question is whether there is
a solution S ⊆ N̄ to

∑
j∈S sj = c.
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CHAPTER 2.

Algorithms

In this chapter we are going to get familiar with the basic ideas and the general concepts
behind the different algorithms that will be used in our HQCBB (cf. Part II). To
this end, we will deal with both classical and quantum algorithms, laying the crucial
foundation for the main part.

2.1. Branch and Bound

The so-called Branch-and-Bound algorithm (also referred to just as Branch and Bound
or even B&B) is a classical algorithm for exactly solving combinatorial optimization
problems. It was proposed by Land and Doig [LD60] in 1960; however, the first use of
the term ”Branch and Bound” to label this algorithm can be traced back to the work
by Little et al. [Lit+63] some three years later.

2.1.1. Overview of the Algorithm

The general idea of Branch and Bound is to recursively divide the problem at hand into
smaller and smaller subproblems and to dynamically investigate only the promising
paths further. Thereby reducing the search space to explore in order to gain a significant
advantage in terms of computing time compared to a simple brute-force search (cf.
Definition 1.11) in turn is what makes the objective of the algorithm. By now, Branch
and Bound finds itself among the most commonly used algorithms and techniques to
tackle NP-hard optimization problems [Cla99]. The big advantage of B&B, decisive
for its popularity, can be considered to be its very generic formulation, making it,
first of all, applicable to any arbitrary COP (cf. Definition 1.6); on the other hand,
all main ingredients of B&B are highly customizable such that the algorithm may
be precisely tailored to the respective problem at hand. In the aim of finding out
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what that concretely means, we will be guided mainly by the excellent state-of-the-art
overview provided by Morrison et al. [Mor+16].

In the following, we will learn about the general structure of Branch and Bound in
more detail; a concrete algorithm design is, however, to be postponed to Part II. The
rationale of Branch and Bound can be summarized to be the iterative generation of
subproblems associated with subsets of the search space and their exploration based on
certain criteria, leading to a tree-structured set of subproblems T . At each iteration, the
algorithm selects a new one out of the list of unexplored subproblems while a feasible
solution ẑ (cf. Definition 1.9), also called incumbent, is stored globally throughout
the run. This incumbent is updated if another candidate with better objective-
function value1 is found within the currently investigated subproblem and returned
in case that there are no further unexplored subproblems. Given a combinatorial
optimization problem with search space Z and objective function C, Branch and Bound
- encapsulating a whole family of algorithms all sharing the above rationale as a common
core - can be compactly written, in its most generic form, as follows:

Algorithm 1: Branch-and-Bound(Z, C)
1 Set T = {Z} and initialize ẑ, ĉ := C(ẑ) ;
2 while T 6= ∅ do
3 Select a (sub-)problem S ∈ T to explore ;
4 if S cannot be pruned then
5 Partition S into subproblems S1, ..., Sr ⊂ S ;
6 T ← T ∪ {S1, ..., Sr} ;
7 T ← T \ S ;
8 continue
9 if ∃ ẑ′ ∈ S such that ext

(
C(ẑ′), ĉ

)
= C(ẑ′) then

10 Update ẑ ← ẑ′ and ĉ← C(ẑ′) ;
11 T ← T \ S ;
12 return ẑ, ĉ

As usual, ext ∈ {max,min} in Line 9, depending on the type of optimization problem
we have (compare Definition 1.6). Note that Algorithm 1 is guaranteed to terminate if
the search space Z contains only finitely many elements and in case the partitioning
procedure in Line 5 produces proper subsets Si ⊂ S, i.e. Si 6= S ∀ i ∈ {1, ..., r}. As this
thesis only deals with a binary ILP (cf. Definition 1.8), we can restrict our attention
to these types of optimization problems, meaning that Z = {0, 1}N for any problem of

1Assessing one objective-function value to be ”better” than some other depends, of course, on the
kind of optimization problem, i.e. whether it is a maximization or a minimization problem.

Page 22 of 141



Chapter 2. Algorithms

size N . Hence, in the knowledge of
∣∣∣{0, 1}N

∣∣∣ = 2N , the guarantee of termination can
be given for all of our applications.

The complexity of a B&B algorithm on the basis of Algorithm 1 is determined by two
properties of the specific implementation (and therefore depends on the problem in
question). The first is the branching factor of the tree, denoted by b, which is given by
the maximum value of r occurring throughout the algorithm, i.e. the largest number of
children S1, ..., Sr generated by any node S.2 In order to recognize the second, we need
to realize that any path of nodes starting from the root of T will sooner or later come
to an end, namely when the currently considered child can by pruned off according
to our chosen criteria or if there are no more degrees of freedom. A path of nodes
connecting the root of T with an ”ending” node that does not have any children itself
is called a leaf. Using this, the second factor is represented by the search depth of
the tree, denoted by d, meaning the length of the longest leaf of the tree. Roughly
speaking, the complexity depends on the maximum length and width dimensions of the
tree. Hence, any B&B implementation has a worst-case running time of O(Mbd) where
M bounds the computing time that is maximally required to explore a subproblem.3

As b > 1 in any case (there need to be at least two children generated in Line 5
for a meaningful partitioning procedure), a general B&B implementation may well
have exponential runtime. However - and that is why Branch and Bound has become
established to today’s extent - there are three ingredients identifiable in Algorithm 1 that
allow for an almost arbitrarily advanced fine-tuning: the searching strategy in Line 3
determining the superior ordering according to which the next subproblem is selected
in each iteration, the pruning strategy or pruning rules in Line 4 being responsible for a
resource-efficient node investigation via preventing the further exploration of provably
non-optimal ”regions” of the search space and, last but not least, the branching strategy
in Line 5 according to which the solution space is divided and new subproblems are
created. The latter - as the only of the three - even made it into the name of the
algorithm for being such a unique selling point. Having said that, the term ”bound”
can admittedly be considered included in what we understand as the pruning rules:
Leveraging bounds on the objective function value of an optimal solution is indeed the
most common example for such a rule to constitute whether a node is investigated
further. More specifically, early B&B approaches operated on the basis of a single
bound only, see e.g. the introductory course by Weinberg [Wei73]. However, modern
approaches rather employ both upper and lower bounds on the objective function
(compare e.g. the Stanford lecture notes by Boyd and Mattingley [BM10]) to estimate

2S is accordingly called parent node.
3Of course, it is not a realistic expectation to have a feasible estimation of M when constructing a B&B

algorithm as it is a highly problem-specific quantity that could at most be found retrospectively.
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and assess the quality of a partial solution.4 So, the only of the three ingredients in
Algorithm 1 not being reflected in the name ”Branch and Bound” is the searching
strategy. However, people often associate the searching and the branching strategy
with only one component that includes both the generation of subproblems and the
subsequent selection of the next tree node.

2.1.2. Relations Between Algorithm Components

Even though the three discussed constituents of Algorithm 1 seem to be quite indepen-
dent, they can actually have an influence on each other. This is, fixing one of these may
affect the selection of another one in the aim of a best performance of the algorithm. For
instance, the specification of pruning rules typically impacts the choice of a searching
and a branching strategy by restricting the feasible options; however, this occurs mainly
in more advanced implementations where pruning is not only carried out on the basis
of bounds but also includes involved methods like cutting planes, column generation or
dominance rules [Mor+16]. Moreover, a good choice of a searching strategy may depend
on the explicit branching strategy, as e.g. an unbalanced tree structure (meaning that
the tree is not symmetric around an arbitrary axis passing vertically through some
parent node and thereby dividing the corresponding set of children in two parts) can
be compensated by a suitable node selection heuristic [Mor+16]. These relationships
between the three algorithm components are depicted by dashed lines in Fig. 2.1; the
corresponding directions of influence are represented by arrows in a natural way.

B&B

Branching
strategy

Searching
strategy

Pruning
strategy

Phase 1:
Searching

Phase 2:
Verification

Heuristic
solution

Optimal
solution

Figure 2.1.: Overview of B&B
components, phases and their re-
spective relationships.

4It would therefore be appropriate to refer to the algorithm as ”Branch and Bounds”.
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Fig. 2.1 also outlines that any B&B run may be considered to consist of two consecutive
phases - the searching phase and the verification phase. As their names suggest, the
algorithm has not yet found an optimal solution during the former whereas there are
still untouched tree nodes (meaning children that were generated at some previous
iteration but have not been selected for exploration) with the incumbent being already
optimal in the latter. Note that a certificate of optimality for the incumbent cannot
be obtained as long as there are unexplored nodes remaining in the tree, since any
of the corresponding search space regions could potentially contain a better solution.
Therefore, these two phases are only identifiable retrospectively or from an outside
view point, as it is not possible to prove optimality of an incumbent and thereby detect
a ”phase transition” during the run of the algorithm. This also means that prematurely
aborting the algorithm run can only result in a heuristic candidate solution whose
quality cannot be assessed with certainty. Not without reason the same terms are
used in the names ”searching strategy” and ”searching phase” - this strategy primarily
impacts the eponymous phase: In the ideal case, the heuristic according to which the
next node is selected shall not influence the performance of the algorithm once the
incumbent occupies an optimal solution, as it is not necessary anymore to investigate
any further node in terms of children generation. Pruning rules, on the other hand,
will have the strongest effect as soon as an optimal solution is found due to the vast
majority of open subproblems performing poorly in comparison afterwards. In contrast,
the branching strategy’s area of influence is not restricted to only one phase; instead,
it impacts the searching phase via being capable of leading towards or away from an
optimal solution (in terms of computing time) and the verification phase by determining
the number of nodes that are still to be explored. While all three discussed strategies
may significantly improve the performance of a B&B algorithm, most literature focuses
on the pruning rules [Mor+16]. The Branch and Cut [PR91] and the Branch and Price
[Bar+98] algorithms, having developed from the standard Branch and Bound concept
presented here by using the techniques of cutting planes and column generation as
pruning approaches, respectively, and being considered as separate algorithms in their
own right, underpin this claim. Now the circle closes with regard to what I mentioned
earlier, namely that exploiting bounds on the objective function is the most basic or
most frequently applied technique to establish a criterion based on which subproblems
are pruned off, which is why people often have this specific kind of pruning strategy in
mind when talking about Branch and Bound.

For the sake of completeness, there is one step in Algorithm 1 that we ignored so
far but whose importance is actually not to be neglected: the initialization of the
incumbent and its associated objective-function value in Line 1. As first noticed
by Danna [Dan08], tree search methods tend to feature a high sensitivity to initial
conditions. For instance, starting with an optimal solution in our B&B scheme will very
likely reduce the size of the computed tree (i.e. fewer nodes need to be investigated)
by a significant amount if the pruning strategy is chosen appropriately. While this
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”erratic” behavior is often treated as a drawback, there are also approaches that exploit
the performance variability to improve the overall strength of the B&B algorithm, see
e.g. the work by Fischetti and Monaci [FM14].

Even though this is not the appropriate time for specific algorithm design decisions,
one aspect of Algorithm 1 may reasonably be concretized at this stage. As already
mentioned, we are limiting our investigations to 0-1 ILPs or, to put it differently, a
search space Z = {0, 1}N with N denoting the problem size. In this case, Line 5
of Algorithm 1 can be simplified: Each branching step reduces the problem to solve
by fixing certain variables to either value 1 or value 0. This is, the partitioning
procedure resp. the generation of subproblems is given by the assignment variables.
But nevertheless there are still different types of branching strategies that can be
applied, namely two in particular as we will see soon. In a sense of foreshadowing, let
me already give it away that we will stick to the basic B&B version in which bounds on
the objective function are making up the only pruning rules, since the main focus of this
thesis is still located in the quantum physical area. Apart from that, the performance
of the basic B&B implementation even using the standard pruning rules is so good
that it suffices for our purposes.5 So before we get to discuss some common options
for the searching and the branching strategy only, I will elaborate a bit on how the
pruning with bounds works, as the neat idea behind it is easy to grasp: In case of a
maximization problem, for each subproblem an upper bound on the objective function
is computed in a specified way; thereupon, the corresponding node can be pruned if its
associated upper bound is smaller than the best lower bound found in the investigation
of the tree so far, possibly updated at each child generation iteration (this is done vice
versa for a minimization problem). This heuristic is pretty intuitive, as a region of the
search space can be guaranteed to not contain an optimal solution if the best possible
value is still worse than worst achievable value in another region already explored.

2.1.3. Common Branching Strategies

Let us now start with the branching strategies, as there are fewer of them, namely
two as mentioned above. The first (and also the most common one) is the binary
branching where any subproblem is divided in two smaller, mutually-exclusive but
collectively exhaustive (MECE) subproblems. In the case of 0-1 ILPs this branching
heuristic is simply given by setting a certain variable to 1 for the first subproblem
and to 0 to obtain the second. Of course, the corresponding search space regions are
disjoint, as this specific variable cannot occupy both values at the same time, and
their union is again the full search space, as the variable can only have value 1 or 0

5This is to be confirmed in Part III.
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in the case of binary ILPs. Recalling what we said about the worst-case complexity
of Branch and Bound in Section 2.1.1, employing binary branching means that the
run time of the algorithm is at worst of the order O(M2d). A suitable example is,
in fact, the Knapsack Problem (cf. Section 1.3) where setting a variable to 1 or 0
is equivalent to including it in or excluding it from the knapsack, respectively. The
second strategy is called wide branching and - as you can imagine - is characterized
by the generation of more than two children, i.e. r > 2 in Line 5 of Algorithm 1.
However, the corresponding subproblems do not necessarily have to be MECE as in
the case of binary branching, meaning that it is generally possible to arrive at the same
subproblems following several different paths of nodes in the search tree. Instead, the
typical heuristic associated with wide branching selects one out of a set of different
options and accordingly fixes the corresponding variable to value 1 or 0, depending
on the definition of the variables. A wide branching could e.g. be naturally set up
for the Max Independent Set Problem - searching for the largest set of vertices in a
graph such that no two of them are adjacent - by forming the set of children in each
partition procedure as the list of currently unspecified vertices in the graph with each
subproblem being interpreted as including the corresponding vertex in the independent
set. As the number of ”open” vertices decreases in each iteration of the algorithm, this
example directly implies that wide branching does not make any statement about the
exact amount of children generated; this number may actually vary throughout the
algorithm run, triggered by certain criteria. The example of Max Independent Set
also shows how wide branching can be used to diminish the size (the height) of the
search tree: Assuming the vertices are handled in proper order, including only the kth

vertex in the independent set, with 1 < k . |V |, requires k − 1 branching steps using
branching strategy while wide a branching can decide on it immediately, see Fig. 2.2.

root

z1 = 1

z1 = 0

z1 = 0
z2 = 1

z1, z2 = 0

z1, z2 = 0
z3 = 1

z1, ..., zk1 = 0

z1, ..., zk−1 = 0
zk = 1

z1, ..., zk−1 = 0
zk = 0

(a) Binary branching.

root

z1 = 1 z2 = 1 z3 = 1

· · · · · ·

zk = 1

(b) Wide branching.

Figure 2.2.: Binary branching compared to wide branching for an exemplary problem
formulated using the binary variables z ≡ z1 · · · zN with 1 < k . N .
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To sum up, the related research question to think of when constructing a B&B algorithm
is something like ”How should the branching be set up in order to generate the smallest
number of unhelpful subproblems?”.

2.1.4. Common Searching Strategies

In fact, almost any searching strategy can be classified into one of four categories.
Each of them, together with their distinguishing characteristics shall now be briefly
presented.

One of the most frequently used strategies (not even only in Branch and Bound) is
called depth-first search (DFS) strategy. In a nutshell, the DFS strategy first explores a
path to the end (i.e. until a leaf is reached) before a new one is opened, and backtracks
to the closest parent node that still has unexplored subproblems, meaning that a branch
starting from the root of the tree is completed before a new one is investigated. There
are some advantages of the DFS strategy that can be immediately inferred from this
high-level definition: First of all, it is pretty easy to implement for nearly all problems
- no matter how different they may be, as it does not rely on the specific problem
structure. Moreover, the height of the tree only increases by proceeding from a node
to one of its direct children, meaning that information about the parent node may
be used in the next step of exploration as a kind of starting point (other searching
strategies would need to store these information in memory in order to achieve the
same) [Mor+16]. Memory is actually a good keyword for turning to the third and
probably most appreciated advantage of the DFS strategy: Since the heuristic does
not induce huge jumps in the search tree, it is capable of outperforming most of the
other searching strategies on the level of memory requirements. More specifically, the
algorithm here only needs to keep track of the path from the root of T to the current
subproblem at hand together with the index of the previously explored node: Either
there is a child remaining and thus selected for exploration or the algorithm backtracks
to the ancestor associated with the stored index and proceeds from there in the same
fashion. However - as always - these benefits of the DFS strategy do not come without
cost. In particular, not referring to the structure of the problem may also be interpreted
negatively, as it can mean that the algorithm spends a large amount of time in search
space regions where there is nothing to gain, simply by being too desperate to give up
the current try and start a new one. Another problem can be found in a bit more of
an edge-case situation, namely when the tree structure is largely unbalanced: Even
though optimal solutions may be located close to the root of T , implementations of
the DFS heuristic as described above are especially not sensible to this property and
could, with a bit of bad luck, become ensnared into tedious investigations of long poor
paths.
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Analogous to the two branching strategies discussed in Section 2.1.3, there is also a
counterpart of the depth-first search strategy, namely the breadth-first seach (BrFS)
strategy. The defining property of the BrFS heuristic to induce the B&B algorithm to
first explore all nodes on the same tree level before increasing the depth by proceeding
with the exploration of children imparts it its name. This second type of searching
strategy is also not tied to the structure of the problem in question and therefore, of
course, features the same advantage-disadvantage pair as the DFS strategy, namely
that it can be implemented in a simple way one one hand, while an algorithm equipped
with the BrFS strategy is not capable of leveraging the information already provided by
the respective problem formulation on the other. A true virtue of BrFS clearly is that
it always finds the optimal solution that is closest to the root of the tree. Moreover,
what was named as a drawback of the DFS strategy is here speaking in favor of the
BrFS strategy: As it finishes the investigation of a tree layer first before taking children
into account, it is naturally performing well on unbalanced search trees. However,
full solutions - especially in our case of binary ILPs with simplified node generation
- can only be found at larger depths. This in turn also means that the probability
for a path in the tree to already be prunable at small depth is not that high. Hence,
the number of nodes to be stored for exploration at a later stage is often quite high,
implying above-average memory requirements for BrFS. This is the reason why the
BrFS strategy is generally considered inefficient and why it is, thus, usually not used
in the context of Branch and Bound [Mor+16].

The next searching strategy to be introduced is the first to be a bit more involved or,
in other words, that is customizable by design. The best-first search (BFS) strategy
is linked to a measure-of-best function µ : 2Z → R (recall that Z = {0, 1}N in our
case), returning a value µ(S) for any newly generated subproblem S ∈ T . The BFS
heuristic is then given by selecting that subproblem out of the list of unexplored nodes
as the next to explore that optimizes the measure-of-best function µ. This is, it picks
the subproblem with the smallest value of µ in the case of a minimization problem
and, accordingly, that one with the largest µ value if the problem at hand asks for
maximizing the objective function. Hence, as you can see, it requires a list of all
unexplored nodes stored in memory together with their corresponding measure-of-best
value as a key in order to make the above definition of the BFS strategy work in
practice. In fact, there is a multitude of conceivable options for the measure-of-best
function µ. Among these, a very natural choice is given by lower or upper bounds on
the objective function, depending on the type of the optimization problem, especially
making the BFS strategy comparable to the DFS and BrFS strategies. Obviously,
because the BFS heuristic does not enforce a whole path or layer to be fully explored
before going over to a possibly more promising region of the search space, the main
advantage of BFS is that it generally finds good and optimal solutions earlier in the
process of exploring the tree. On the other hand, just like for BrFS, the huge memory
requirements raised by the need to keep track of all unexplored nodes at any time can
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be seen as a drawback of the strategy. Beyond that, if the choice of µ causes that many
subproblems in T whose measure-of-best value equals the optimal objective function
value, i.e. µ(S) = C(z∗) for an optimal solution z∗, it could happen that it takes
an algorithm employing the BFS strategy comparably long to actually arrive at an
optimal solution due to being delayed in middle regions of the search tree [Mor+16].

The last strategy to be presented here is a hybrid heuristic made up by the DFS and the
BFS strategy. It is called cyclic best-first search (CBFS) strategy and also based on a
measure-of-best function µ : 2Z → R. The main idea now is to not store all unexplored
subproblems in a common dictionary with the keys given by the µ values but instead
divide the open nodes into different classes, also called contours, such that newly
generated nodes are assigned to distinct dictionaries according to certain rules. Then,
instead of moving forward vertically or horizontally in the tree or jumping to the node
with the best µ value, the CBFS strategy repeatedly iterates through the non-empty
contours and every time selects the best subproblem according to the measure-of-best
function. The contours can be understood to group subproblems that are similar
or comparable in some sense (determined by the contouring rules). In this regard,
the measure-of-best function then establishes a local ranking among every contour.
The cycling between the different contours aims at weeding out the disadvantageous
behavior of DFS to not overcome a path even if it is unpromising. On the other hand,
it ensures that no region of the search space is overlooked by frequently entering each
class of related subproblems. One common example for a quantity according to which
nodes are categorized in contours is the depth in the tree T . In the case of depth-based
contours, the inheritance of the DFS strategy can be clearly recognized, as each cycle
arrives at a leaf of the search tree before starting from the top again. There are two
important results about the CBFS strategy that make sense to be mentioned; both
have been shown by Morrison et al. [Mor+17]. The first provides an upper bound on
the number of nodes explored by CBFS for which the generation of children cannot
be avoided: It is at maximum proportional to the number of subproblems explored
by BFS when using the same measure-of-best function, the same branching strategy
and the same pruning rules. Intuitively, this can be seen as follows: During each cycle
through the non-empty contours, at least one node in the whole pass would have also
been selected for exploration by the BFS strategy until an optimal solution is found.
The second states that for any searching one can find a set of contour rules such that
the associated CBFS strategy explores the same sequence of subproblems. This is, the
CBFS strategy can be interpreted as a generalization of all other searching strategies,
which ultimately means that it would have been sufficient to only introduce the CBFS
heuristic and derive any of the other three strategies discussed here from it.

Note that all of these strategies, except for BrFS, can be further refined by specifying
a rule according to which ties are broken. In the case of BFS and CBFS, ties of course
refer to the measure-of-best function which is a direct component of the corresponding
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searching strategies. As mentioned above, too many ties (in terms of the optimal
objective-function value) can indeed have a negative impact on the runtime of a B&B
algorithm equipped with the BFS strategy. However, ties can become important
likewise when using the DFS heuristic, depending on the pruning rules chosen in the
concrete algorithm design. A common example is given by exploiting bounds on the
objective function to decide on pruning; matching values of the objective function are
not a rarity in this setting (see also Fig. 2.3). Therefore, the tie breaking rules may
also influence the performance of an DFS-algorithm non-negligibly.

Fig. 2.3 conclusively provides an illustration of how (different) the discussed searching
strategies can perform on the same problem instance, assuming the same branching
strategy and equal pruning rules.

61

62 7 7

73 5 6 68 5 11

74 8 5 89 9 10

(a) DFS strategy.

61

62 7 3

74 5 5 66 5 7

78 8 9 810 9 11

(b) BrFS strategy.

61

63 7 2

74 5 11 67 5 10

75 8 6 89 9 8

(c) BFS strategy.

61

65 7 2

76 5 10 63 5 8

711 8 9 87 9 4

(d) CBFS strategy.

Figure 2.3.: Exemplary instance of a 3-variable maximization problem for which the four
discussed searching strategies are applied, resulting in four B&B versions differing in the
order in which the nodes are explored. For the sake of comparability, the branching strategy
and the pruning rules are chosen equally in Figs. 2.3a to 2.3d. In particular, binary branching
is chosen over wide branching. The node colored in gray corresponds to the optimal solution.
The numbers inside the nodes represent lower bounds on the optimal objective function
value (except for those in the last tree level, there they denote the actual value of the
corresponding leafs) while those outside indicate the exploration order determined by the
respective searching strategy. These lower bounds serve as measure-of-best values in for BFS
and CBFS in Figs. 2.3c and 2.3d with ties being broken randomly. On the other hand, DFS
and BrFS in Figs. 2.3a and 2.3b are equipped with the heuristics of preferring to move left in
the tree and passing through each layer from left to right, respectively.
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2.2. QAOA

QAOA differs from Branch and Bound (cf. Section 2.1) in two main respects, namely
that it is a quantum (or quantum-classical) algorithm and that it only approximates
the optimal solution of the problem at hand. In fact, as we will see, while QAOA is
theoretically converging to an optimal solution, actually occupying this value is not
possible in practice. The first version of QAOA as an algorithm to tackle optimization
problems was proposed by Farhi, Goldstone, and Gutmann [FGG14]. For an even more
rigorous mathematical treatment of the three components dealt with in this section I
would refer the reader to [Bin22].

2.2.1. Quantum Adiabatic Evolution

QAOA is itself based on another quantum algorithm that was initially presented almost
15 years before, also by Farhi et al. [Far+00]. The idea behind the so-called quantum
adiabatic algorithm (QAA) is to generate optimal solutions to optimization problems
via an adiabatic evolution of extremal eigenstates of a time-dependent Hamiltonian.

The QAA in turn is based on the adiabatic theorem, stating that the eigenspaces
of an operator are preserved when evolving slowly and for a sufficiently long time
according to a time-varying Hamiltonian (sometimes also called perturbation) unless
they are mutually intersecting and the time-variation of the Hamiltonian itself is
sufficiently smooth. Its original formulation in that shape goes back to Born and
Fock [BF28]. This shall now be exploited as follows: In Section 1.2.2 we already saw
how the objective function of a problem, for which an optimal solution is wanted,
translates to a Hamiltonian for which an extremal eigenstate is searched in the quantum
mechanical context (see especially Eq. (1.2.6)). From now on we will assume w.l.o.g.
that our optimization problem is a maximization problem (recall that we discussed
how to transform between a minimization and a maximization problem at the end
of Section 1.2.1), meaning that we are aiming for a highest-energy eigenstate (or its
associated eigenvalue) of the corresponding objective Hamiltonian C. The idea then
is to introduce a second Hamiltonian B for which a highest-energy eigenstate is, in
contrast, known in advance and, moreover, easy to construct. Leveraging the adiabatic
theorem to map this state, chosen as a starting point, to a highest-energy eigenstate of
C (i.e. an optimal solution) then solves our problem. The time-varying Hamiltonian
performing the transition B 7→ C is chosen by Farhi et al. [Far+00] as the simple linear
interpolation

H(t) :=
Å

1− t

T

ã
B +

Å
t

T

ã
C , t ∈ [0, T ], (2.2.1)
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obeying H(0) = B and H(T ) = C. As always, the unitary time evolution generated by
H(t), denoted by U(t), is the solution of the Schrödinger equation

d

dt
U(t) = −iH(t)U(t) , t ∈ [0, T ] (2.2.2)

(assuming ~ = 1). It can be written in the form

U(t) = lim
n→∞

n∏
j=0

e−iH
(
j t

n

)
t
n . (2.2.3)

As H(t) is obviously sufficiently smooth, the adiabatic theorem implies that, assuming
the initial state is chosen as described above, in the limit T →∞ we obtain an optimal
solution if B satisfies that there is a non-vanishing gap between the highest-energy
eigenstate and the rest of its spectrum. However, waiting an infinite amount of time is
generally not a good approach when designing an algorithm that shall work in practice.
A simple heuristic how to avoid these complications it to just abort the evolution with
U(t) after a sufficiently large time T in order to get a state that is close to the desired
highest-energy eigenstate of C. So, the QAA is made up by three steps: (1) preparing
the initial state on a quantum computer, (2) applying U(t) up to certain finite time
T , then called the quasi-adiabatic evolution, and (3) repeatedly measuring the final
state in the computational basis (cf. Section 1.2.2) to obtain a distribution of optimal
solution approximations. However, a feasible choice of T - e.g. driven by a certain
specified error not to be exceeded by the outcome - is not possible without information
about the minimum spectral gap, gmin, between the largest eigenvalue of C and the
next; Farhi et al. [Far+00] argue that the magnitude of T is mainly governed by g−2

min.

What remains to be answered is the question how the auxiliary Hamiltonian B could
be chosen. Applying the adiabatic theorem to the highest-energy eigenstates, the
preservation of eigenspaces also means that the geometric multiplicity6 of the largest
eigenvalue is an invariant quantity of the adiabatic evolution. Hence, as C is given
by the problem, B must be chosen such that the geometric multiplicty of its largest
eigenvalue matches with that of an optimal solution. Problematic now is that this
property of C is in general not known, meaning that B can not be engineered on a
sound basis. Nevertheless, the following one has emerged as emerged as a popular
choice:

B =
N∑

n=1
σx

n (2.2.4)

with
σx

n ≡ 1⊗ · · · ⊗ 1⊗ σx︸︷︷︸
n

⊗1 · · · ⊗ 1︸ ︷︷ ︸
N

6The geometric multiplicity of an eigenvalue is the dimension of its associated eigenspace.
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where σx =
Å

0 1
1 0

ã
denotes the first Pauli matrix and N the problem size (cf. Defini-

tion 1.6). One can show that B as in Eq. (2.2.4) has no non-trivial invariant coordinate
subspace, meaning that apart from 0 and q

N there is no I = span{|j〉 : j ∈ I ⊆ N}
satisfying B(I) ⊆ I. Therefore, B is said to completely non-diagonal. Using the
knowledge that σx

n has eigenstates |+〉n and |−〉n, where |±〉 = 1/
√

2(|0〉 ± |1〉), with
corresponding eigenvalues 1 and −1, respectively, the highest-energy eigenstate of B as
in Eq. (2.2.4) is obtained by tensoring up all the single highest-energy eigenstates:

|s〉 := |+〉⊗N :=
N⊗

n=1
|+〉n =

N⊗
n=1

1√
2

(|0〉n + |1〉n) = 1√
2N

∑
z∈{0,1}N

|z〉 . (2.2.5)

We will revisit the following in the actual implementation of the QAOA (cf. Part III):
In order to obtain a working algorithm, the QAA first needs to prepare this initial
state |s〉 with any qubit being initialized in state |0〉. This is actually pretty simple
here where |s〉 is given as in Eq. (2.2.5). Using the action of a Hadamard gate

H |0〉 = 1√
2

Å
1 1
1 −1

ãÅ
1
0

ã
= 1√

2

Å
1
1

ã
= 1√

2
(|0〉+ |1〉) = |+〉 , (2.2.6)

we find that |s〉 may be generated from the zero-state |0, ..., 0〉 by a unitary US via

|s〉 = |+〉⊗N =
N⊗

n=1
|+〉n =

N⊗
n=1

H |0〉n = H⊗N |0〉⊗N =: US |0〉⊗N . (2.2.7)

Apart from that, a high-level reasoning that the application of the adiabatic theorem
with respect to7 Eq. (2.2.1) for this particular choice of B works as intended is given
by Farhi, Goldstone, and Gutmann [FGG14]. However, this only holds for COPs
with exactly one optimal solution, meaning that the largest eigenvalue of C needs to
be non-degenerate. A more fundamental convergence proof without a spectral gap
condition8, showing that this is actually not a necessary requirement, is provided by
Binkowski [Bin22, S.3.1] and stated there as follows:

Theorem 2.1 (Convergence of the QAA). Let Fopt be the optimal solution space
(cf. Definition 1.13) of an unconstrained maximization problem COP in the sense of
Definition 1.6 with objective Hamiltonian C defined via Eq. (1.2.6). Then,

lim
T →∞

U(T ) |s〉 ∈ Fopt

for the quasi-adiabatic evolution U(T ) induced by the Hamiltonian H(t) as in Eq. (2.2.1)
and |s〉 defined in Eq. (2.2.5).

7Referred to as ”w.r.t.” hereafter.
8The spectral gap is supposed to approach 0 as t→ T in the case of multiple optimal solutions.
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In fact, the complete non-diagonality of B turns out to be a necessary property of
the initial Hamiltonian. Not only is it used in the proof of Theorem 2.1, Binkowski
[Bin22] further shows that there always exists an unconstrained maximization problem
for which the convergence fails in case that the starting Hamiltonian has at least one
proper invariant coordinate subspace, even when the restriction of the initial state
being given by |s〉 as in Eq. (2.2.5) is relaxed.

2.2.2. Quantum Approximate Optimization Algorithm

Beyond what was previously mentioned, the first QAOA version can be considered as
a refinment of the QAA. Its development was motivated by the lack of a construction
component reliably determining the quality of the returned approximations or, to put
it differently, a parameter by which it can be regulated.

Recall how the adiabatic evolution, generated by the interpolating Hamiltonian in
Eq. (2.2.1), could be expressed in Eq. (2.2.3). The following result for general matrices
will be of great usage to rewrite this expression.

Theorem 2.2 (Trotter product formula). For two arbitrary n × n real or complex
matrices X and Y ,

eX+Y = lim
m→∞

Ä
e

X
m e

Y
m

äm

where eA denotes the matrix exponential of a diagonal matrix A.

Proof. A proof can e.g. be found in [Hal15, Thm.2.11].

Now applying the Trotter product formula to the unitary time evolution induced by
H(t) as the weighted sum of Hamiltonians B and C yields

U(t) = lim
n→∞

n∏
j=0

e−i
ÄÄ

1− j
n

t
T

ä
B+
Ä

j
n

t
T

ä
C
ä

t
n

= lim
n→∞

n∏
j=0

lim
m→∞

(
e−i
Ä
1− j

n
t
T

ä
B t

nm e−i
Ä

j
n

t
T

ä
C t

nm

)m

.

Of course, we are interested in the quasi-adiabatic evolution at time t = T , assuming
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that T is chosen sufficiently large:

U(T ) = lim
n→∞

n∏
j=0

lim
m→∞

(
e−i
Ä
1− j

n

ä
B T

nm e−i
Ä

j
n

ä
C T

nm

)m

= lim
n→∞

n∏
j=1

e−iβjBe−iγjC

=: lim
n→∞

n∏
j=1

UB(βj)UC(βj)

for suitably chosen βj, γj with j ∈ {1, ..., N}, and

UB(βj) := e−iβjB and UC(γj) := e−iγjC ; (2.2.8)

p is called the depth of the QAOA. Again, implementing an infinite series of these
pairs of unitary operators is not a feasible approach for any algorithm on any kind of
computer. Instead, we introduce a parameter p and use that, for p <∞ sufficiently
large,

U(T ) ≈
p∏

j=1
UB(βj)UC(γj). (2.2.9)

This can now be applied to the initial state |s〉 defined in Eq. (2.2.5), yielding a state

|β, γ〉p :=
Ç

p∏
j=1

UB(βj)UC(γj)
å
|s〉 =

p∏
j=1

UB(βj)UC(γj) |s〉 (2.2.10)

that is determined by the 2p parameters β ≡ (β1, ..., βp) and γ ≡ (γ1, ..., γp). Let me
say a word about the domain of the single parameters, which can actually be restricted
to not be the full R. As we are only working with integer-valued objective functions (cf.
Definitions 1.6 and 1.7), Eq. (1.2.6) implies that C has integer eigenvalues solely. The
same holds true for B as in Eq. (2.2.4), since each single σx-term has eigenvalues ±1.
Therefore, the parameters may be restricted to the domains βj ∈ [0, π) and γj ∈ [0, 2π)
for all j ∈ {1, ..., p}, which is why they are mostly referred to as angles.9 For what
comes in the near future, it is worth taking a look at how the unitaries UB and UC act
on single computational basis states. Since C is diagonal in the computational basis
by design (cf. Eq. (1.2.6)),

UC(γj) |z〉 = e−iγjC |z〉 = e−iγjC(z) |z〉

for z ∈ {0, 1}N , i.e. UC adds a phase to any state based on the respective value of
the objective function by linear extension. Therefore, C is called phase separator and

9Further restricting β to the interval [0, π) instead of [0, 2π) is possible thanks to its spectrum being
symmetric around 0.
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UC accordingly phase separation unitary. To see the effect of UB on a computational
basis state is a bit more involved. First, notice that, due to [σx

n, σ
x
m] = 0 ∀n,m ∈

{1, ..., N},

UB(βj) = e−iβjB = e−iβj

∑N

n=1 σ
x
n = e−iβjσ

x
1 −...−iβjσ

x
N = e−iβjσ

x
1 · · · e−iβjσ

x
N =

N∏
n=1

e−iβjσ
x
n .

Known from elementary quantum mechanics classes, e−iβjσ
x
n is a rotation operator,

here rotating the nth qubit around the x-axis of ”its” Bloch sphere by βj. Implied by
(σx)2 = 1, meaning that (σx)k = 1 if k ∈ N is even and (σx)k = σx if k is odd, we can
make use of the identity

e−iβjσ
x
n = cos (βj)1− i sin (βj)σx

n (2.2.11)

to obtain

UB(βj) =
N∏

n=1
e−iβjσ

x
n =

N∏
n=1

(
cos (βj)1− i sin (βj)σx

n

)
= cos (βj)N

1

− i cos (βj)N−1 sin (βj)σx
1 − ...− i cos (βj)N−1 sin (βj)σx

N

− cos (βj)N−2 sin (βj)2σx
1σ

x
2 − ...− cos (βj)N−2 sin (βj)2σx

1σ
x
N

+ ...+ (−i)N sin (βj)Nσx
1 · · ·σx

N

=
N∑

k=0
(−i)k cos (βj)N−k sin (βj)k

∑
l1+...+lN =k
l1,...,lN ∈{0,1}

N∏
n=1

(σx
n)ln .

where 1 here means the identity operator on all N qubits10 and (σx
n)0 = 1. Recall

that the single σx
n flips the states |0〉n and |1〉n, i.e. σx

n |0〉n = |1〉n and σx
n |1〉n = |0〉n,

respectively. Having that in mind, we see that especially the last sum of σx’s in the
above expression implies that the application of UB to an arbitrary state results in a
superposition of all computational basis states, as it covers any possible combination of
σx operators on the N positions, meaning that the qubits in the computational basis
representation of our state are flipped in any possible way (including no flip at all).
Therefore, B is called mixer and UB accordingly mixing unitary.

The underlying concept of what we have seen about QAOA so far is that the alternating
application of phase separation and mixing unitaries prefers some states over others,

10It may indeed be a bit unfortunate that the same symbol 1 can represent the identity on different
numbers of qubits depending on the situation; however, it should always be clear from the context
what it refers to.
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meaning that their amplitudes in the final state |β, γ〉p will be larger than those of others.
The hope then is that these states are the desired ones, namely those corresponding
to optimal or near-optimal solutions. Especially the approximation Eq. (2.2.9) gives
rise to the name Quantum Approximate Optimization Algorithm - or QAOA in short.
In contrast to the QAA (cf. Section 2.2.1), the choice of initial Hamiltonian B is not
intended to be configurable in the Quantum Approximate Optimization Algorithm;
instead it is predefined as in Eq. (2.2.4).11 Based on this, Eq. (2.2.10) justifies us to
think of the QAOA as a parametrized version of the QAA with fixed B. We evaluate
the obtained state |β, γ〉p via the expectation value of the objective Hamiltonian as

Ep(β, γ) := p〈β, γ|C |β, γ〉p (2.2.12)

and set
E∗

p = max
β,γ

Ep(β, γ). (2.2.13)

As increasing the depth p is adding degrees of freedom by introducing more angles, the
result for Ep can only become better, meaning that

E∗
p+1 ≥ E∗

p . (2.2.14)

Even further, we find:

Corollary 2.3. Let C be the objective function of an unconstrained maximization
problem COP = (N, {cj}a

j=1, Cj
a
j=1, ∅,max) in accordance with Definitions 1.6 and 1.7.

Then,
lim

p→∞
E∗

p = max
z∈{0,1}N

C(z). (2.2.15)

Proof. This result is an immediate consequence of Theorem 2.1.

This result, together with Eq. (2.2.9), determines the impact the depth has on the
quality of the approximation, namely that it improves with increasing value of p. In
contrast, the success probability | 〈z∗|U(T ) |s〉 |2 of the QAA to arrive at an optimal
solution z∗ ∈ {0, 1}N at time t = T can in general not found to be a monotonic function
of T , see e.g. [Cro+14, fig.2]. Assuming a fixed depth p, Eq. (2.2.13) implies that
the task of maximizing the objective function is thus translated to optimizing the 2p
angles β, γ. While we are on the comparison of QAOA and QAA: An example where
the QAA fails but the QAOA succeeds is described in [FGG14, S.VI]; the former is
there trapped in a false optimum in case of subexponential computing times.
11This property of the first QAOA to start from a fixed mixer will actually turn out to be crucial for

the question why this first version is generally not sufficient.
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Farhi, Goldstone, and Gutmann [FGG14] propose some strategies aiming to find good
angles. The first is highly problem-specific as it exploits the structure of the investigated
problem in order to express Ep for a fixed value of p in a form that can be evaluated
on a classical computer whose resource requirements do not necessarily grow with the
problem size. However, as you may imagine, this is not a very generally applicable
approach. Therefore, the second method is the more widely used one: It embeds
Eq. (2.2.10) in the setting of a variational algorithm. The resulting QAOA scheme for
a general unconstrained maximization problem with objective function C and depth d
is depicted as pseudocode in Algorithm 2.

Algorithm 2: QAOA(COP, p)
1 Set i = 0 and initialize β(0), γ(0)

2 Evaluate Ep = Ep

Ä
β(0), γ(0)

ä
according to Eq. (2.2.12) via repeated measurements

3 while termination condition not satisfied do
4 Set |ψ〉 = |0〉⊗N (initialization of the qubits)
5 |ψ〉 ← |s〉 = US |ψ〉 (preparation of the initial state)
6 Set j = 0
7 while j < p do
8 |ψ〉 ← UC

Ä
γ

(i)
j

ä
|ψ〉 (application of the phase separation unitary)

9 |ψ〉 ← UB

Ä
β

(i)
j

ä
|ψ〉 (application of the mixing unitary)

10 j ← j + 1

11 Evaluate E(i)
p = Ep

Ä
β(i), γ(i)

ä
via repeated measurements

12 if E(i)
p > Ep then

13 Ep ← E(i)
p (update of best expectation value found so far)

14 i← i+ 1
15 return Ep

The transition to the next iteration step in Line 14 of Algorithm 2 encapsulates
an important characteristic of the Quantum Approximate Optimization Algorithm:
The update of the parameter sets β(i), γ(i) 7→ β(i+1), γ(i+1) according to a classical
optimization routine turns the QAOA into a hybrid quantum-classical algorithm -
more specifically, a VQA. The termination condition in Line 3 depends on the specific
chosen classical optimizer; it can e.g. be based on a maximum number of iterations or a
minimum deviation between the results of two successive iterations to not be undercut.
For instance, Farhi, Goldstone, and Gutmann [FGG14] propose to choose the angles
(β, γ) from a grid on the set [0, π)p × [0, 2π)p, using a maximum number of iteration
steps that is screwed sufficiently upwards such that the grid is fine enough to not miss
any peaks of the objective function on the two intervals; finally, the maximum one out
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of the finite sequence of expectation values computed during the run of Algorithm 2
in Line 11 is returned. However, I can already reveal that we will employ a different
classical optimization method. What we should learn from Algorithm 2 is the following:
Beyond the quantum mechanical part (i.e. the application of phase separation and
mixing unitaries) and the specified depth, the performance of the QAOA depends
to a large extent on classical optimization properties, namely the initial guesses of
angles, β(0) and γ(0), the chosen optimization method and the termination condition
related thereto. Nevertheless, what we said in the context of Branch and Bound (cf.
Section 2.1) also applies for the QAOA: This is still a quantum physics thesis, which
is why resources will not be allocated excessively to the task of classical parameter
optimization even despite its great influence on the QAOA performance.

Finally, we can state the analogue of Theorem 2.1 for the Quantum Approximate
Optimization Algorithm:

Theorem 2.4 (Convergence of the Quantum Approximate Optimization Algorithm).
Let Fopt be the optimal solution space (cf. Definition 1.13) of an unconstrained
maximization problem COP in the sense of Definition 1.6 with objective Hamiltonian C
defined via Eq. (1.2.6). Suppose UB and UC to be given as in Eq. (2.2.8) with B defined
via Eq. (2.2.4). Then, for any ε > 0 there are finitely many angles β = (β1, ..., βp) and
γ = (γ1, ..., γp), p <∞, such that the final state |β,γ〉p defined by Eq. (2.2.10) satisfies

dist
Ä
|β,γ〉p , Fopt

ä
< ε

where dist denotes the smallest distance between |β,γ〉p and any state in Fopt.

Proof. For a rigorous and constructive proof of this fundamental theorem I would
again refer to Binkowski [Bin22, S.3.2].

Theorem 2.4 states that the Quantum Approximate Optimization Algorithm is able to
approximate an optimal solution of our maximization problem to an arbitrary degree.
However, there is, in fact, one important property of the QAOA that cannot be seen
from Theorem 2.4 and is therefore worth to be stated separately as we will permanently
exploit it in Part II: In combination with the found monotonicity of the expectation
value (cf. Eq. (2.2.14)), Corollary 2.3 implies that the approximation returned by
Algorithm 2 is always providing a lower bound on the actual optimal solution value.

A totally different path into investigating how the QAOA works is taken by Koßmann
et al. [Koß+22]. Instead of proceeding in the probably more NISQ-friendly and
intuitive direction of slowly increasing a shallow depth p, they start off considering the
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asymptotic limit p → ∞, where it turns out that the quantum part of Algorithm 2
may be properly analyzed in a differential geometric fashion using the tools of Lie
theory (see e.g. [Hal15]). More specifically, the set of accessible states |β,γ〉p→∞ can
be found to form a differentiable manifold, on which each of the two families of unitary
operators (phase separation and mixing) corresponds to a vector field. This geometric
approach goes hand in hand with some nice visualizations for a single qubit of how
moving along these vector fields on the surface of the qubit’s Bloch sphere can lead
from the initial state to one representing an optimal solution. Then, the authors step
back from asymptotic depth to deep circuits for the sake of realizability and discuss
how the description and the found properties need to be adapted.

Now comes the drawback of the QAOA version we have seen so far. Everything
that was discussed in this chapter until this point was developed on the basis of an
unconstrained optimization (maximization) problem. However, only the least real-
world problems come with no constraints. One possible strategy to mitigate the
discrepancy between expectation and ability is called softcoding the constraints, which
transforms a constrained combinatorial optimization problem as in Definition 1.6
into an unconstrained one. In a nutshell, the idea of softcoding the constraints is
to introduce penalties that are sufficiently large to ensure that violating a constraint
is never favorable, especially in comparison to other clauses. These penalties are
then used in place of the costs or profits when considering the constraints as clauses.
When given a maximization problem with objective function C, we are, however, not
able to figure out whether some softcoding of constraints has already been performed
previously, meaning that Algorithm 2 does not distinguish between problems that
are unconstrained in their nature and those that have just been transformed into
such. Therefore, the Quantum Approximate Optimization Algorithm is also called
Softconstraint QAOA. Crucial here is to note that the success of applying Algorithm 2
to a softcoded combinatorial optimization problem badly depends on the specific choice
of penalties: If the chosen values are too small, the intentional separation between
feasible and infeasible states might turn out to not be sufficiently pronounced. This can
cause a bad approximation quality obtained by the Softconstraint QAOA, especially in
the realistic case where constraint-violating bitstrings z ∈ {0, 1}N correspond to very
profitable objective-function values. Hence, it is an involved task to adjust the penalties
such that the desired QAOA property of returning only lower bounds of the optimal
solution value is persisted. On the other hand, too large penalty values may impede
the optimization of the angles β and γ. Apart from this consideration, one thing is
for sure: As no operation in Algorithm 2 completely eliminates any (unwanted) states
and only adds different phases and mixes them through, the final state with optimal
angles |β(opt), γ(opt)〉 will not get around also containing non-vanishing amplitudes
corresponding to infeasible states. Thus, no matter how good the approximation might
be, this presence of infeasible states always introduces some magnitude of error in the
result. The quantum-computing community was not willing to settle for that.
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2.2.3. Quantum Alternating Operator Ansatz

Unfortunately, the Quantum Approximate Optimization Algorithm is generally not
capable of solving hardconstrained optimization problems12. It is surprisingly simple
to discover the reason for that: Feasibility (cf. Eq. (1.2.3)) is just not respected in any
regard by the alternating application of phase separation unitaries, that solely rely
on the objective function, and mixing unitaries, which are not related to the specific
problem at all with B as in Eq. (2.2.4). Given a hardconstrained maximization problem
COP with feasible solution space F and a specified depth p, a meaningful feasibility
requirement for the QAOA would, for instance, be something like

|β,γ〉k ∈ F ∀ k ∈ {0, ..., p}, ∀ (β,γ) ∈ [0, π)k × [0, 2π)k if |s〉 ∈ F (2.2.16)

with |β,γ〉k being defined according to Eq. (2.2.10), |β,γ〉0 := |s〉, and where |s〉 denotes
the initial state13, meaning that neither UC(γ) nor UB(β) maps outside the feasible
subspace (as the angles (β, γ) are free to vary over the full intervals [0, π)× [0, 2π)). For
C being diagonal in the computational basis by design in Eq. (1.2.6), UC(γ) naturally
leaves F invariant. In contrast, as already mentioned, B is completely non-diagonal
if chosen as defined in Eq. (2.2.4), implying that also UB(β) does not have any non-
trivial invariant coordinate subspaces (except for β = 0 obviously), i.e. especially
not F . Thus, the issue the Quantum Approximate Optimization Algorithm has with
hardconstrained problems is located in the mixing procedure. As we just saw, while
the complete non-diagonality of the mixer was necessary to guarantee convergence of
the QAOA in the unconstrained case, it is remarkably responsible for the failure in the
hardconstrained setting.

After we have tried to adapt the objective Hamiltonian C to incorporate constraints
into the QAOA at the end of Section 2.2.2 and ended up not fully happy, the next
logical step - in particular against the background of the above failure analysis - is to
direct our attention to the mixer instead. It is intuitively clear that this approach will
be more involved than the penalizing of the objective function; designing a mixer B
such that an application of UB creates a pure superposition of feasible states badly
depends on the problem structure at hand, whereas implementing the QAOA with
softcoded constraints according to Algorithm 2 is comparatively easy and can be
improved by adjusting the penalties after the first results have been obtained. This
also means that the underlying concept can only be sketched on a pretty generic level
here, leaving most of the work for the concrete construction.

12Combinatorial optimization problems whose constraints were not softcoded into the objective
function are called hardconstrained. The term is used to suggest that the problem shall be handled
as is, namely with the constraints in place.

13Here not necessarily given by Eq. (2.2.5) but considered from a general perspective.
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The idea of generalizing the Quantum Approximate Optimization Algorithm goes back
to Hadfield [Had18]. Although our rationale is to tinker with the mixer, the first hurdle
we stumble over when going through the steps in Algorithm 2 is that we do not know
how the initial state |s〉 has to be prepared. Now where B is not a priori given by
Eq. (2.2.4), |s〉 cannot simply be chosen as in Eq. (2.2.5) anymore. Of course, the same
holds for the domain of the parameters β; as the final mixers used in the end might have
non-integer eigenvalues, we are no longer allowed to restrict β ∈ [0, π), but instead need
to generally enlarge the domain to β ∈ R. In the understanding of Hadfield [Had18],
the quantum part in the QAOA procedure consists of three main components that may
be configured in order to properly address the problem in question: the initial state,
the phase separation unitaries and the mixing unitaries. In [Had18, Ss.6.2.1], certain
”design criteria” are formulated aiding in making choices on each of them by providing
guidelines for sensible constructions. The initial state |s〉, for instance, shall be easy
to implement, meaning that it can be prepared starting from the state |0〉 = |0, ..., 0〉
(cf. Eq. (1.2.5)) without requiring a circuit depth14 that scales too badly with the
problem size. If neither a constant nor a logarithmic depth can be guaranteed, the
initialization should be considered separately from the residual QAOA part according
to Hadfield [Had18]. In case of the Quantum Approximate Optimization Algorithm,
the initial state |s〉 = |+, ...,+〉 (cf. Eq. (2.2.5)) can be seen, based on what we found
about the action of UB in Section 2.2.2 with B as in Eq. (2.2.4), to be generated by
one additional, initial application of the mixing unitary as

|s〉 = UB(β0) |0〉 (2.2.17)

for some additional angle β0 ∈ [0, π). For the mixing unitaries there are two expressive
criteria in particular named in [Had18]: First, they shall respect Eq. (2.2.16), i.e.
UB(β) should map feasible states to feasible states for any non-zero value of the
parameter β ∈ R \ {0}, meaning that UB preserves the feasible subspace. The second
criterion formulated for the mixing unitaries extends that demand in the sense that
UB is not only not leaving the feasible subspace invariant but rather exploring it;
this is, for any two feasible states |z1〉 , |z2〉 ∈ F , there is some parameter value β∗

and some positive integer m > 0 such that the m-times repeated application of the
corresponding mixing unitary connects them, i.e. | 〈z2| (UB(β∗))m |z1〉 | > 0. Note that
in general (UB(β))m 6= UB(mβ). Turning to the third and last component, one simple
requirement for the phase separation unitary is listed in [Had18], namely that it is
diagonal in the computational basis. Incorporating the concept discussed so far in
Algorithm 2 (i.e. undefining the inital state, the phase separation unitaries and the
mixing unitaries and making them free parameters of the algorithm) takes it to a
new level of generality; the result is called Quantum Alternating Operator Ansatz, a
shrewd invention by Hadfield [Had18] that allows to continue using the abbreviation
14Recall the depth of a quantum circuit describes the maximum number of consecutive gates on one

and the same qubit.
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QAOA. As the Quantum Approximate Optimization Algorithm with the particular
choices made for the three components in Section 2.2.2 is clearly a special case of
the Quantum Alternating Operator Ansatz, we will w.l.o.g. mean the latter when
talking about QAOA from now on. In terms of a final remark, we can state that even
though the phase separation unitaries are also listed as a customizable constituent of
the algorithm in [Had18, S.6.2], it is admitted that UC(γ) = e−iγC as in Eq. (2.2.8)
with objective Hamiltonian C defined via Eq. (1.2.6) is, up to a global phase that can
be ignored, a good enough choice in almost every case, leaving merely the initial state
|s〉 and the mixer B for investigation.15 The Quantum Alternating Operator Ansatz is
reworked and further elaborated in [Had+19]; the discussion is in particular extended
by additional problems and examples, for which especially mixers are investigated.

Theorem 2.5 (Convergence of the Quantum Alternating Operator Ansatz). Let Fopt ⊆
F be the optimal solution space (cf. Definition 1.13) of a constrained maximization
problem COP in the sense of Definition 1.6 with objective Hamiltonian C defined via
Eq. (1.2.6) and feasible subspace F (cf. Definition 1.12). Suppose UB and UC to be
given as in Eq. (2.2.22) with a B that is chosen to obey the two design criteria by
Hadfield [Had18], namely

(i) UB(β) |z〉 ∈ F if |z〉 ∈ F and

(ii) there is N 3 m > 0 and β∗ ∈ R such that | 〈z2| (UB(β∗))m |z1〉 | > 0 for any
|z1〉 , |z2〉 ∈ F .

Then, for any ε > 0 there are finitely many angles β = (β1, ..., βp) ∈ Rp and γ =
(γ1, ..., γp) ∈ [0, 2π)p, p < ∞, such that the final state |β,γ〉p defined by Eq. (2.2.10)
satisfies

dist
Ä
|β,γ〉p , Fopt

ä
< ε

where dist denotes the smallest distance between |γ, β〉p and any state in Fopt.

Proof. Once more I would refer to Binkowski [Bin22, S.3.3] for a proof.

An interesting approach was proposed by Bärtschi and Eidenbenz [BE20], suggesting to
not focus on the mixer as emphasized above, but to shift the effort to the preparation
of the initial state instead. Note that this approach was developed specifically for
hardconstrained optimization problems. The wording ”preparation” is indeed chosen

15Note that this automatically allows to restrict the parameter γ to the interval [0, 2π) again.
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deliberately, as the desired initial state is always of the same shape, independent of
the respective problem at hand: For a given COP, we want to yield

|s〉 = |F 〉 := 1√
|feas(COP)|

∑
z∈feas(COP)

|z〉 (2.2.18)

with feas(COP) as in Definition 1.9, i.e. the goal is an equal superposition of all
feasible states of our problem. |F 〉 is well-defined for {0, 1}N ⊇ feas(COP) having finite
cardinality. The labeling of the state |F 〉 is based on the knowledge that F is generated
by those states |z〉 with z ∈ feas(COP) (cf. Definition 1.12). Of course, the exact form
of the initial state |s〉 will vary greatly from problem to problem. For example, in the
case of an unconstrained (or softconstrained) optimization problem of size N , |F 〉 just
evaluates to the initial state |+〉⊗N = 1/

√
2N ∑

z∈{0,1}N |z〉 in Eq. (2.2.5) used in the
original QAOA, since any state is feasible in the absence of (hard) constraints. Now
starting from the state |0〉 = |0, ..., 0〉 as in the Quantum Alternating Operator Ansatz
by Hadfield [Had18], the initial state is prepared using a state preparation unitary US

via
|F 〉 = |s〉 = US |0〉 . (2.2.19)

As the title of the approach by Bärtschi and Eidenbenz [BE20] already suggests,
figuring out how to construct US is central for this strategy. The phase separation
unitaries in this approach are again simply given by UC(γ) = e−iγC as in Eq. (2.2.8)
where C as always is the Hamiltonian corresponding to the objective function of the
problem in the sense of Eq. (1.2.6). The pressing question thus is how to choose the
mixer and, accordingly, the mixing unitaries. As already indicated, this will be based
on the way we obtained our initial state. At this stage, recall the relation between
the mixer and the initial state that we found in Section 2.2.1 to be necessary for
leveraging the adiabatic theorem: In order to ensure that the quasi-adiabatic evolution,
approximated by an alternating application of phase separation and mixing unitaries,
converges to an optimal solution of our hardconstrained maximization problem with
maximum objective function value, the process needed to be started in a highest-energy
eigenstate of the initial Hamiltonian. Translating this to the situation here, we have to
guarantee that |F 〉 is such a highest-energy eigenstate of the chosen mixer. Bärtschi
and Eidenbenz [BE20] propose to use the following mixer:

B = |F 〉 〈F | , (2.2.20)

i.e. the projector onto the state |F 〉. Consequently, the mixing unitary is then given
by

UB(β) = e−iβB = e−iβ|F 〉〈F |. (2.2.21)

To see how that operator can be implemented using the state preparation unitary US,
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write out that matrix exponential:

UB(β) = e−iβ|F 〉〈F | =
∞∑

k=0

(−iβ)k

k! (|F 〉 〈F |)k

= (−iβ)0

0! (|F 〉 〈F |)0 +
∞∑

k=1

(−iβ)k

k! |F 〉 〈F |F 〉 · · · 〈F |F 〉 〈F |︸ ︷︷ ︸
k

= 1 +
∞∑

k=1

(−iβ)k

k! |F 〉 (〈F |F 〉︸ ︷︷ ︸
=1

)k−1) 〈F |

= 1 +
Ç

∞∑
k=1

(−iβ)k

k!

å
|F 〉 〈F | = 1 +

Ç
∞∑

k=0

(−iβ)k

k! − 1
å
|F 〉 〈F |

= 1 +
Ä
e−iβ − 1

ä
|F 〉 〈F |

= 1 +
Ä
e−iβ − 1

ä
US |0〉 〈0|U †

S by Eq. (2.2.18)

= USU
†
S + US

Ä
e−iβ − 1

ä
|0〉 〈0|U †

S by unitarity of US

= US

Ä
1−
Ä
1− e−iβ

ä
|0〉 〈0|

ä
U †

S (2.2.22)

Slightly differing from the nomenclature in [BE20], mixers of the form in Eq. (2.2.20)
are called Grover mixers, as the middle part of the mixing unitaries in Eq. (2.2.22)
generated by them, flanked by the state preparation unitaries, is very reminiscent of the
diffusion operators used by Grover [Gro05]; they indeed match exactly for β = −π/3.

As emphasized above, a QAOA employing a Grover mixer will then use the standard
phase separation unitary UC(γ) = e−iγC for an objective Hamiltonian C. Of course,
the classical part likewise can be taken one-to-one from the Quantum Approximate
Optimization Algorithm (cf. Section 2.2.2). Hence, the only components of Algorithm 2
changing in this approach compared to the original one are the initial state |s〉 and
therefore the state preparation unitary US as well as the mixer B and thus the mixing
unitaries UB. Due to only having adapted the respective definitions here compared to
Section 2.2.2 (but not the used symbols), Algorithm 2 can also be used to depict the
Grover mixer approach QAOA, as none of |s〉 , US, B, UB are specifically referred to a
concrete definition in Algorithm 2 - just like the name ”QAOA”, there abbreviating
”Quantum Approximate Optimization Algorithm” and here standing for ”(Grover-
mixer) Quantum Alternating Operator Ansatz”.

One characteristic of a QAOA based on Grover mixers, that was considered a unique
selling point by Bärtschi and Eidenbenz [BE20], shall be stated and proven explicitly,
namely that feasible basis states end up with the same amplitude if the objective
function values of the corresponding bit strings are equal.
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Proposition 2.6. Suppose the quantum part of a depth-p QAOA for an optimization
problem COP of size N to be equipped with a state preparation unitary US as in
Eq. (2.2.19), phase separation unitaries given by UC(γ) = e−iγC and Grover mixing
unitaries UB(β) = e−iβ|F 〉〈F | as in Eq. (2.2.20). Let

Ä
|β,γ〉p

ä
n

denote the amplitude of
the nth computational basis state, corresponding to the basis state |n〉 via Eq. (1.2.5),
in the final state |β,γ〉p obtained after one QAOA iteration (cf. Eq. (2.2.10)). Then,
the following holds for those final amplitudes:

(i) For |n〉 /∈ F with n ∈ {0, 1}N ,
Ä
|β,γ〉p

ä
n

= 0.

(ii) For |n〉 , |m〉 ∈ F with n,m ∈ {0, 1}N ,
Ä
|β,γ〉p

ä
n

=
Ä
|β,γ〉p

ä
m

whenever
C(n) = 〈n|C|n〉 = 〈m|C|m〉 = C(m).

Proof. Inspired by the proof in [BE20], Proposition 2.6 is proven via induction. So, start
with the 0th iteration, i.e. the initial state preparation, whose result by construction in
Eq. (2.2.18) satisfies

(|β,γ〉0)n = (|F 〉)n =
®

1/
√
|feas(COP)| , if |j〉 ∈ F

0 , if |n〉 /∈ F,

with n ∈ {0, 1}N and thereby naturally properties (i) and (ii). Now assume that this is
also true for the kth iteration, k ∈ {1, ...p− 1} arbitrary but fixed, i.e. (|β,γ〉k)n = 0
if |n〉 /∈ F and (|β,γ〉k)n = (|β,γ〉k)m if |n〉 , |m〉 ∈ F and C(n) = C(m) with
n,m ∈ {0, 1}N . Due to its diagonality in the computational basis, UC obviously leaves
F invariant. and acts as a phase shift. Using the assumption that (|β,γ〉k)n = 0 if
|n〉 /∈ F , we find that UC(γk+1) acts as

UC(γk+1) |β,γ〉k =
∑

n∈feas(COP)
UC(γk+1) (|β,γ〉k)n |n〉

=
∑

n∈feas(COP)
e−iγk+1C (|β,γ〉k)n |n〉

=
∑

n∈feas(COP)
e−iγk+1C(n) (|β,γ〉k)n |n〉 .

Using that, consider now the arithmetic mean of the amplitudes of that state obtained
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after applying UC(γk+1):

AM := AM (UC(γk+1) |β,γ〉k) := 1
|feas(COP)|

∑
n∈feas(COP)

e−iγk+1C(n) (|β,γ〉k)n

= 1
|feas(COP)|

∑
n∈feas(COP)

e−iγk+1C(n) (|β,γ〉k)n 〈n|n〉︸ ︷︷ ︸
=1

= 1
|feas(COP)|

∑
n∈feas(COP)

〈n| e−iγk+1C(n) (|β,γ〉k)n |n〉

= 1
|feas(COP)|

√
|feas(COP)| 〈F |UC(γk+1) |β,γ〉k

= 1√
|feas(COP)|

〈F |UC(γk+1) |β,γ〉k

Leveraging what we found during the derivation of Eq. (2.2.22), this arithmetic mean
turns out to be useful when proceeding with the consecutive application of UB(βk+1),
then giving the state after iteration k + 1:

|β,γ〉k+1 = UB(βk+1)UC(γk+1) |β,γ〉k
=
Ä
1−
Ä
1− e−iβk+1

ä
|F 〉 〈F |

ä
UC(γk+1) |β,γ〉k

= UC(γk+1) |β,γ〉k −
Ä
1− e−iβk+1

ä
|F 〉 〈F |UC(γk+1) |β,γ〉k

= UC(γk+1) |β,γ〉k −
√
|feas(COP)|

Ä
1− e−iβk+1

ä
AM |F 〉 .

Since |β,γ〉k+1 can apparently be expressed as a superposition of |β,γ〉k and |F 〉, the
first conclusion we draw is that

(
|β,γ〉k+1

)
n

= 0 if |n〉 /∈ F , using the assumption that
the same holds for |β,γ〉k. Furthermore, together with the assumption that |β,γ〉k
also obeys property (ii), this result also implies(
|β,γ〉k+1

)
n

= (UC(γk+1) |β,γ〉k)n −
√
|feas(COP)|

Ä
1− e−iβk+1

ä
AM · (|F 〉)n

= e−iγk+1C(n) (|β,γ〉k)n −
√
|feas(COP)|

Ä
1− e−iβk+1

ä
AM 1√

|feas(COP)|
= e−iγk+1C(m) (|β,γ〉k)n −

Ä
1− e−iβk+1

ä
AM

= e−iγk+1C(m) (|β,γ〉k)m −
Ä
1− e−iβk+1

ä
AM

= (UC(γk+1) |β,γ〉k)m −
√
|feas(COP)|

Ä
1− e−iβk+1

ä
AM · (|F 〉)m

=
(
|β,γ〉k+1

)
m

for |n〉 , |m〉 ∈ F if C(n) = C(m). Hence, |β,γ〉k+1 satisfies both (i) and (ii).

I still owe you to reason that the Grover mixer B in Eq. (2.2.20) is a permitted choice,
i.e. that it does not violate any of the prerequisites we have recapped above. Like any
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projector, due to

B2 = (|F 〉 〈F |)(|F 〉 〈F |) = |F 〉 〈F |F 〉︸ ︷︷ ︸
=1

〈F | = |F 〉 〈F | = B,

B has eigenvalues 0 and 1 as

λ |ϕ〉 = B |ϕ〉 = B2 |ϕ〉 = B(B |ϕ〉) = λB |ϕ〉 = λ2 |ϕ〉 ⇒ λ2 != λ

for an eigenstate |ϕ〉 of B with corresponding eigenvalue λ can only be satisfied by
λ = 0 or λ = 1. Since

B |F 〉 = (|F 〉 〈F |) |F 〉 = |F 〉 〈F |F 〉︸ ︷︷ ︸
=1

= |F 〉 ,

the initial state |s〉 = |F 〉 is indeed an eigenstate of B corresponding to the largest
eigenvalue 1. Unlike the standard mixer in Eq. (2.2.4), the Grover mixer does generally
not have a spectrum that is symmetric around 0 (cf. Section 2.2.2). Nevertheless, the
projection property implies that we are able to restrict the domain of the parameters
β ∈ [0, 2π) thanks to the integer eigenvalues. Let us now check the both criteria
established by Hadfield [Had18] concerning the mixing unitaries induced by B. To this
end, suppose |z〉 ∈ F ; then, using the calculation leading to Eq. (2.2.22),

UB(β) |z〉 = e−iβ|F 〉〈F | |z〉 =
Ä
1−
Ä
1− e−iβ

ä
|F 〉 〈F |

ä
|z〉

= |z〉 −
Ä
1− e−iβ

ä
|F 〉 〈F |z〉︸ ︷︷ ︸

6=0

= |z〉 − const |F 〉 ,

i.e. UB(β) |z〉 ∈ F , meaning that UB maps feasible states to feasible states independent
on the value of β. On the other hand, let |z1〉 , |z2〉 ∈ F ; then, recycling what we just
saw directly gives

〈z2|UB(β)|z1〉 = 〈z2| (|z1〉 − const |F 〉) = 〈z2|z1〉 − const 〈z2|F 〉︸ ︷︷ ︸
6=0

6= 0,

i.e. we do not even need a repeated application of UB or any specific value β∗ such that
there is some non-vanishing transition probability between |z1〉 and |z2〉 under UB.16

Now where we have managed to trace anything back to the initial state preparation,
we must not forget that it is not a priori clear that a unitary US as in Eq. (2.2.18),
which is not requiring an exponential number of qubits or gates itself, exists at all
16An exception of course is β = 0 where UB(0) = 1, meaning that const = 0. However, the critierion

by Hadfield [Had18] asks for the existence of at least one such value of β, which is not corrupted
by this special case.
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for every combinatorial optimization problem. Using Grover mixers should rather be
understood as an approach that might be beneficial, depending on the existence and,
in particular, the implementability of such a polynomial-size state preparation.

Compared to the general Quantum Alternating Operator Ansatz by Hadfield [Had18],
one difference not to be underestimated is the property of the Grover mixing unitaries
in Eq. (2.2.22) to generate a superposition of all feasible states in every iteration, which
does not necessarily need to be true for general mixing unitaries as used in [Had18].
This can immediately be inferred from UB(β) |z〉 = |z〉 − const |F 〉 for |z〉 ∈ F . In
the general setting, it might take the QAOA multiple repeated applications of phase
separation and mixing unitaries in order to reach such a ”perfect mixing”, requiring
a larger depth of the entire QAOA to achieve optimal solution approximations of
comparable quality, which in turn makes it less NISQ-friendly. The Grover mixers
conversely are especially designed to have that feature.
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Core Idea

This part can be considered central as it develops the core idea behind our algorithm -
without a theoretical construct there is no implementation and no simulation. Here we
are going to put together the different concepts introduced and discussed in Part I.
Presenting the underlying construct that determines how these components are joined
to collectively form a hybrid quantum-classical Branch-and-Bound algorithm - which
we will shortcut denote as HQCBB - is the point of this chapter.

In the introduction I emphasized that the classical algorithm provides the framework of
the HQCBB; the quantum part - given by the QAOA - is then integrated to optimize
the Branch and Bound via improving its overall performance. Therefore, the basic
structure of the algorithm will naturally highly resemble Algorithm 1. What was
not done in Section 2.1 is to discuss specific choices for the three building blocks of
a general B&B, namely the searching strategy, the pruning rules and the branching
strategy. Of course, explicit configurations that are tailored specifically to the problem
at hand cannot be part of an overarching concept. However there are some high-level
designs among the pruning rules that can be described here.

Going through Algorithm 1 in order, let us first say a word about the initialization of
the algorithm. The HQCBB implementation will start with an ”empty” incumbent
where no variables are assigned. In general, updating the incumbent (cf. Lines 9 and 10
in Algorithm 1) only becomes relevant when the searching procedure reaches (feasible)
leafs of the tree, as these correspond to full solutions with all variables being assigned,
for which the final objective function value can just be evaluated. Of course, if no full
solution has been encountered so far, meaning that the incumbent is still in its initial
empty state, it is updated in any case, turning it into a feasible solution once and for
all. Otherwise, an update is only performed if the current leaf comes along with a
better objective function value than the incumbent has at that point.

The first thing that can be considered part of a general pruning strategy is a feasibility
check. This verification of feasibility is not only the first toll stop where recently selected
subproblems may be rejected, but represents also the first action executed by the
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HQCBB after choosing the next node for exploration - the corresponding search space
region is not worth further investigation if it does not contain any feasible solutions at
all and should therefore be immediately discarded. Verifying the feasibility of a node
is straight-forward: We just need to check whether the weights of the selected items do
exceed the capacity when being aggregated.

Now proceeding with the pruning rules, recall that I outlined at the end of Section 2.1.2
why we will rely all of our pruning decisions on bounds of the respective objective
function: further refinement is overambitious as the standard Branch and Bound is fast
enough on problems of those sizes that can be tackled with our quantum algorithms.1
To become concrete, there will be two kinds of bounds2, namely an upper bound and a
lower bound (meant as functions here). Although their features are slightly different
when tackling maximization or minimization problems, pruning nodes off the search
tree is in either case based on comparing upper and lower bounds. For KP as a
maximization problem, we calculate an upper bound whenever selecting a subproblem
for exploration. The outcome is valid for the restricted region of the search space which
is determined by the variable assignment going along with this last node selection
and all other nodes in its path to the root (cf. Section 2.1.2). Thus, computing
an upper bound for a subproblem starts off from a partial assignment of variables.
Crucial now is that the currently explored subproblem may then be discarded if the
obtained upper bound is smaller than the best lower bound found so far during the
exploration of the search tree. The best lower bound is initialized according to the
initial incumbent: it is just set to the lower bound obtained when no variables are
assigned, which trivially evaluates to 0. This heuristic is pretty intuitive - it is not
possible to find an optimal solution in a search space region about which we know from
the outset that the maximum objective-function value we can achieve is still worse than
best lower bound found for a different region. This is, even the worst solution contained
in this other region is still better than the best in the one currently explored. Of course,
instead of the current best lower bound, the best value obtained for a full solution
may be used for this comparison if the searching procedure has already encountered a
leaf whose final value has not been exceeded by some other region yet. In fact, it is
even sufficient for rejection if the current upper bound is not strictly greater than this
comparison value, meaning that a node is also pruned in the case of equality, as the
currently explored region is apparently not capable of leading to any improvement. In
case the node at hand cannot be discarded, we also evaluate its associated lower bound
and potentially update the best lower bound, obviously depending on whether the
just computed value would increase the best lower bound. This behavior of upper and
lower bounds works, as you may expect, vice versa when considering a minimization
problem instead.

1Still to be verified in Part III.
2Whenever we simply speak about ”bounds” from now on, we mean bounds on the objective function.
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Note that for a maximization problem it is generally easier to obtain lower bounds than
upper bounds. This is attested by the fact that any feasible solution automatically
provides a lower bound for the entire problem. Upper bounds, on the other hand, are
often based on relaxations, since increasing the set of possible feasible solutions can
only yield an optimal solution of better or equal quality. The same again holds the
other way round for minimization problems. So, that is already set concerning the
pruning rules.

Now comes the interesting part: integrating the QAOA. As explained in Section 2.2.2,
the output of a QAOA for a maximization problem as derived in Section 2.2 is always
providing a lower bound on the optimal solution value; again the analogue is true
vice versa for a minimization problem.3 Therefore, a QAOA may be used as an
alternative lower bound for the Knapsack Problem. The idea then is to not only
compute the classical lower bound for the currently explored node but also run the
constructed QAOA to obtain a quantum lower bound - thereupon the better of the
two obtained values can be used as lower bound in the B&B. The crucial rationale
here is the following: As we are adding information to the algorithm by computing
a second bound, the result cannot get worse. Thereby, non-optimal regions of the
search space should in principle be detected and rejected earlier by exploring fewer
unhelpful subproblems whose associated nodes can be pruned off; this in turn leads to
the legitimate hope that the additional integration of a quantum subroutine given by
the QAOA might improve the performance of the overall Branch-and-Bound algorithm.
That conviction can really be considered the heart of the HQCBB.

As emphasized in the introduction, the QAOA we are about to construct for the
Knapsack Problem based on a novel Grover mixer implicitly represents a second part -
besides the HQCBB’s intrinsic motivation described above - that is of interest for the
quantum computing community in this thesis: the construction of a new feasibility-
preserving QAOA for the Knapsack Problem that is based on a Grover mixer which is
in turn induced by a recently proposed revolutionary state preparation.

3By adjusting signs of the objective Hamiltonian and the final outcome the QAOA logic can simply
be adapted in order to properly address minimization problems.
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Classical Part

As we will see throughout this chapter, the classical tools to be employed in the
HQCBB for the Knapsack Problem for computing upper and lower bounds, generating
subproblems according to the assignment of variables as well as in terms of the branching
and searching strategy can be considered standard and are not very involved.

4.1. Branching Strategy

Here we are likewise starting off with the easiest part that can be fully specified in one
sentence: For the Knapsack Problem, we will employ binary branching, leading to a
separation of the search space into two MECE1 regions in every step. More precisely,
the partitioning procedure (the analogue of Line 5 in Algorithm 1) is given by creating
two subproblems that are induced by assigning the next variable to have value 0 in
one branch and value 1 in the other. Hence, given the list of unexplored subproblems
T and a bitstring x corresponding to the node to branch from, this routine updates
the stack as:

Algorithm 3: Branching(T, x)
1 T ← T ∪ {x+ ”0”}
2 T ← T ∪ {x+ ”1”}
3 return T

Recalling Definition 1.14, KP is formulated using only one type of binary variables,
i.e. a variable set to 1 in the context directly means that the corresponding item is
chosen to be included in the knapsack while a value of 0 analogously expresses that it
is not.

1Mutually exclusive, collectively exhaustive.
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4.2. Bounds

As the searching strategy will rely on the used bounds, the latter should be elaborated
on priorly. Lower and upper bounds for KP are in fact based on the same simple
heuristic called Greedy.

4.2.1. Greedy Lower Bound

The Greedy lower bound exploits a fact that I have emphasized earlier in Chapter 3,
namely that any feasible solution immediately provides a lower bound to the problem,
since the optimal solution can obviously not have a worse value by definition of the
term ”optimality” (cf. Definition 1.10). As lower bounds for a maximization problem
like KP are stronger the larger they are, the strategy now is to find a feasible solution
that is as good as possible. The following trick will be mainly responsible for why
this objective is not as hard as it might seem: Given a list of N items forming a KP
instance, each consisting of two integer values (cf. Definition 1.14), our first action will
always be to sort them in descending order according to their share of profit by weight
such that pπ(1)

wπ(1)
≥
pπ(2)

wπ(2)
≥ ... ≥

pπ(N)

wπ(N)
.

where π is a permutation of N = {1, ..., N}. In case that the given list of N items is
not sorted accordingly, this can be done efficiently with O(N logN) complexity (cf.
Section 1.1), see e.g. [AHU83, Ch.8]. We will therefore assume from now on that the
items are already sorted in that fashion, i.e. pi/wi ≥ pj/wj whenever i < j for i, j ∈ N.
This heuristic implies that the HQCBB processes the items and decides on whether or
not to include them in the knapsack according to how promising they are, for which
this relative profit is a clear indicator. The Greedy heuristic then runs through the list
of accordingly sorted items and selects items to be included as long as the capacity is
not exceeded, stopping at the first item for which the respective residual capacity is
not enough. This procedure indubitably generates a feasible solution and thereby a
lower bound. However, it can still be slightly improved in the following way: Instead
of breaking at the so-called critical item for which the capacity would be exceeded,
just skip it and proceed with the next item and check whether that may still be fitting;
this is repeated until the end of the list unless the entire capacity has been consumed,
see Algorithm 4.

What remains to be clarified is how the Greedy lower bound is computed for subproblems
in the tree for which a certain amount of variables have already been set. One of
several equivalent options is to generate a subproblem for the remaining variables
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Algorithm 4: GreedyLowerBound(KP)
1 if items not sorted in descending order of relative profit then
2 Sort items such that pj/wj ≥ pj+1/wj+1 ∀ j ∈ {1, ..., N − 1}
3 Set P = 0,W = 0
4 for j ∈ {1, ..., N} do
5 if W + wj ≤ Wmax then
6 W ← W + wj

7 P ← P + pj

8 if W = Wmax then
9 break

10 return P

that are still open and just calculate the lower bound for that reduced problem via
Algorithm 4. The result must then be added to some offset that is determined by the
already specified variables. However, it may not always be so simple as in the KP
case to create an equivalent subproblem from a partial solution; here, we just have
to remove the specified items from the list of all items without changing the order of
the remaining ones to stick to the relative-profit descending sorting and lastly reduce
the capacity by the sum of weights whose corresponding variables are assigned value 1
(each item chosen to be included in the knapsack decreases the remaining capacity by
exactly its weight). The offset, on the other hand, is in case of the Knapsack Problem
obviously given by the sum of profits corresponding to 1-valued variables.

4.2.2. Greedy Upper Bound

Let us now turn to the upper bound we are going to use from the classical side. In
accordance with what I emphasized in Chapter 3, the Greedy upper bound is based
on the relaxation of the integer constraints featuring the binary variables. This is,
demanding xj ∈ {0, 1} ∀ j ∈ {1, ..., N} in Definition 1.14 for a KP instance of size
N is replaced by the continuous domains xj ∈ [0, 1]. In the context, this essentially
means that we are also allowed to include only fractions of items into the knapsack.
Apart from this allegedly small change in Eq. (1.3.3), the rest of Definition 1.14 stays
the same - the result is called the continuous Knapsack Problem (cKP). It is clear
that the optimal solution to the continuous Knapsack Problem provides an upper
bound on the optimal solution of the standard Knapsack Problem, as an optimal
solution x∗ ∈ {0, 1}N of the latter is also contained in [0, 1]N , although it is probably
not optimal in the continuous case. The key gaining of this seemingly unimpressive
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relaxation is that the problem is now not longer exponentially hard to solve. To show
this we will see that the optimal solution to cKP can be stated right away.

Proposition 4.1. Let c denote the index of the critical item of a KP instance in the
sense of Definition 1.14 whose items are sorted descending according to their relative
profits, i.e.

c = min
®
n ∈ {1, ..., N} :

n∑
j=1

wj > Wmax

´
.

In fact, 1 < c ≤ N due to assumptions (ii) and (iii) in Section 1.3. Then, the optimal
solution x∗ of cKP is given by

x∗
j =


1 , if 1 ≤ j ≤ c− 1
∆Wmax/wc , if j = c

0 , if c+ 1 ≤ j ≤ N

where ∆Wmax = Wmax−
∑c−1

j=1 wj denotes the remaining capacity that is not large enough
to also include the critical item into the knapsack.

Proof. Inspired by Martello and Toth [MT90, Ss.2.2.1], first note than any optimal
solution of cKP needs to exactly consume the capacity, as the whatsoever big remaining
part may otherwise be used to additionally include a fraction of any item that is
not already selected to be fully included in the knapsack. Now assume pj/wj >
pj+1/wj+1 ∀ j ∈ {1, ..., N − 1} w.l.o.g.2 and denote the optimal solution of cKP by y∗

for which we suppose that y∗
k < 1 for a k < c. In order to still fully consume the entire

capacity, there must then at least be one q ≥ c such that y∗
q > x∗

q with x∗ as defined
in Proposition 4.1. Hence, when choosing ε > 0 small enough, we can increase the
value of y∗

k by ε and diminish the value of y∗
q by ε · wk/wq while upholding y∗

k < 1 and
y∗

q < x∗
q, respectively, leading to a difference in the total profit of

εpk − ε
wk

wq

pq = εwk

Å
pk

wk

− pq

wq

ã
︸ ︷︷ ︸

>0

> 0 as k < q.

This is obviously a contradiction to the assumption that y∗ is the optimal solution,
corresponding to the maximal achievable profit. The same logic allows to show that
y∗

k > 0 for k > c leads to a analogous contradiction. As the capacity needs to be

2Note that we above demanded p1/w1 ≥ p2/w2 ≥ ... ≥ pN/wN instead of strict inequalities. However,
we can always find a p̃ shifting all profits pj 7→ p̃j = pj + p̃ such that p̃j/wj > p̃j+1/wj+1 ∀ j ∈
{1, ..., N − 1} is satisfied. The same could obviously also be done with the weights.
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completely exhausted for optimality, this finally implies that the optimal solution to
cKP must be given by y∗ = x∗, whose total weight (cf. Eq. (1.3.2)) evaluates to

W (x∗) =
N∑

j=1
wjx

∗
j =

c−1∑
j=1

wj + wc

∆Wmax

wc

=
c−1∑
j=1

wj + ∆Wmax = Wmax.

Proposition 4.1 shifts the effort of finding an optimal solution of cKP to finding the
critical item. Martello and Toth [MT90, Ss.2.2.2] show how this can be done in O(N)
time for a cKP instance of size N , which in turn means that the continuous Knapsack
Problem is not NP-hard. The optimal solution x∗ as in Proposition 4.1 has a total
profit (cf. Eq. (1.3.1)) of

P (x∗) =
N∑

j=1
pjx

∗
j =

c−1∑
j=1

pj + pc

∆Wmax

wc

=
c−1∑
j=1

pj + pc

wc

∆Wmax.

Due to the integer constraints and the integer-valued profits featuring the (standard)
Knapsack Problem according to Definition 1.14, a valid upper bound on its optimal
solution value is therefore given by

bP (x∗)c =
c−1∑
j=1

pj +
õ
pc

wc

∆Wmax

û
.

The Greedy upper bound computes this value iteratively as illustrated by Algorithm 5.

Algorithm 5: GreedyUpperBound(KP)
1 if items not sorted in descending order of relative profit then
2 Sort items such that pj/wj ≥ pj+1/wj+1 ∀ j ∈ {1, ..., N − 1}
3 Set P = 0,W = 0
4 for j ∈ {1, ..., N} do
5 if W + wj > Wmax then
6 Set ∆Wmax = Wmax −W
7 P ← P + (pc/wc)∆Wmax
8 break
9 W ← W + wj

10 P ← P + pj

11 return bP c

Algorithms 4 and 5 show that both the Greedy lower bound as well as the Greedy
upper bound for KP with N items can be computed within a complexity of O(N). This
is, the further down we get in the tree during the searching procedure, i.e. the more
variables are specified or items decided on, the faster these bounds can be evaluated.
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4.3. Searching Strategy

Now we can turn to the searching strategy we will employ in the Knapsack HQCBB.
At the risk of repeating myself, we will again keep it simple to not waste our energy too
much at the classical stuff. Accordingly, the searching procedure will follow a primitive
heuristic that most closely resembles the depth-first search (cf. Section 2.1.4). However,
it is engineered in one respect in order to shift the trade-off between its simplicity on
the one hand and its inability to react on the given problem structure to a fair balance.
To be concrete, this is done by taking into account the chosen classical lower bound
just discussed in Section 4.2, making it a mixture of DFS and BFS where the lower
bound takes the role of the measure-of-best function.3

Moreover, our searching heuristic is going to be composed of two parts: one function
corresponding to the standard node selection after a branching has occurred and one
method that backtracks and decides on which node to proceed with if the current
search space region is not to be investigated further. This case arises if we find the
currently selected subproblem to be infeasible or that it can be ordinarily pruned via a
bound comparison or when we have reached a leaf of the tree. More specifically, our
two-component heuristic is given as follows: After a branching step, always pick one
of the two generated children next for exploration; even more precisely, choose the
one with the better lower bound (i.e. that one whose Greedy lower bound is larger)
with ties being broken randomly. Two exceptions to this rule exist, namely if either
not both of the partial solutions resulting from the branching are feasible or if the
corresponding nodes generated represent leafs. In the former case the infeasible one
might probably win the comparison while it is meaningless to compute bounds for
leafs in the second, as their associated solution value can be directly evaluated. Both
exceptions are handled via randomly selecting one of the two nodes. This might seem
strange at the first sight, as an infeasible node may thereby have the same chance
of being chosen compared to a feasible one; however, this edge-case can safely be
ignored as the next algorithm iteration first checks the picked node for feasibility and
potentially throws it away immediately. Given the list of unexplored subproblems T ,
this behavior is summarized by Algorithm 6.

Due to always choosing one of the direct child nodes after a branching - meaning that
increasing the depth in the tree is preferred over moving back to a potentially more
promising region - our strategy clearly inherits from the DFS. But however, among the
two options, the more auspicious path is been taken based on the lower bound, bringing
some BFS aspects into play. What is still open is the question how our algorithm

3As we learned in Section 2.1.4, there exist some contour drawing rules such that this custom
searching heuristic can be understood as a CBFS strategy.
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Algorithm 6: NodeSelection(T )
1 Set x(0), x(1) = T [−2], T [−1] (initialization of options as lastly appended nodes)
2 if

∣∣∣x(0)
∣∣∣ =

∣∣∣x(1)
∣∣∣ = N or z(0) is not feasible or x(1) is not feasible then

3 return random
¶
x(0), x(1)

©
4 else
5 return argmax

i∈{0,1}
GreedyLowerBound

(
x(i))

backtracks, i.e. which node is selected after an exploration path has come to an end.
The method implementing this is even simpler than the node selection - it just picks
the node at the last position in the list of unexplored subproblems T :

Algorithm 7: Backtracking(T )
1 x = T [−1]
2 return x

That is, it always selects that open node which has the least distance from the current
node. Due to our branching strategy being configured to always be binary, there
are only two options for the next node selected for exploration by the backtracking
function: either it is the second of the two child nodes generated during the last
branching step that was not chosen first by the node selection procedure or it is the
node with the largest depth among the ones that survived the branching and subsequent
node selection up to this point, as its distance from the current node is minimal. Hence,
comparing with what was said in Section 2.1.4, our backtracking logic was adopted
one-to-one from the DFS strategy. Of course, this kind of backtracking only works if
there are still unexplored subproblems in the tree.

4.4. Further Refinement and Full HQCBB

Apart from the three main components of a Branch-and-Bound algorithm that we
worked through in Sections 4.1 to 4.3, there are some smaller refinements that shall be
additionally incorporated due to their good effectiveness vs. implementation complexity
ratios.

The first is the feasibility check emphasized in Chapter 3, which is performed right
away after deciding on the next node to explore via the standard node selection or
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the backtracking heuristic described in Section 4.3. For the Knapsack Problem (cf.
Definition 1.14), a partial solution x = x1 · · ·xn with n ∈ N = {1, ..., N} is feasible
according to Definition 1.9 if W (x) = ∑n

j=1 wjxj ≤ Wmax.

When talking about bounds (cf. Section 4.2) we were already talking about how to
generate a subproblem with the usual shape of a KP instance (cf. Definition 1.14) based
on a partial assignment of variables x = x1 · · ·xn with n ∈ N. However, the simplistic
rule described there may be extended in one respect: In order to guarantee that the
generated subproblem meets the assumptions made in Section 1.3, the weight of every
remaining item should be checked against the residual capacity to make sure that any
item is in principle affordable. Extracting all non-specified items and performing this
check in every step yields a method that shall be denoted GenerateSubproblem(x).

Another trick that exploits the KP problem structure and aims at improving the
HQCBB performance from the classical point of view is to check for a currently selected
non-leaf node4 - after its feasibility being verified - whether the corresponding partial
solution happens to already fully consume the capacity. Why would we want to know
that? When there is nothing left from the capacity, we can directly infer that there is
only one feasible complete solution remaining in the search space region induced by
the currently explored subproblem, which is obtained by assigning value 0 to all other
yet unspecified variables. Any other solution having the current node as a parent in
the tree can with certainty be assessed infeasible for including at least one more item
into the knapsack, although the capacity was already exhausted entirely. By creating
that single feasible solution via appending only 0’s to the current partial assignment of
variables, keeping its associated objective function value and by potentially updating
the incumbent accordingly, we might save computing time which would otherwise be
spent in regions where there is not much to be gained.

Now we have classically everything together for our HQCBB. In accordance with the
core idea explained in Chapter 3, combining the branching strategy from Section 4.1,
the lower and upper bounds from Section 4.2 making up the pruning rules as well as the
searching strategy from Section 4.3 yields the fundamental framework for our algorithm.
The general QAOA pattern given by Algorithm 2 was visited in Section 2.2.2. Although
configuring it specifically for the Knapsack Problem is still outstanding, it can already
be high-level referenced here. Embedding it into the classical Branch and Bound as
described in Chapter 3 finally leads to the following algorithm structure, depicted in
Algorithm 8 with pseudocode.

4Leafs are treated separately as described in Chapter 3; for them, the following is meaningless.
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Algorithm 8: Knapsack-HQCBB(KP)
1 Set T = {} (initialization of the stack as empty list)
2 Set x̂ = ”” (initialization of the incumbent as empty bitstring)
3 Set l̂b = GreedyLowerBound(KP) (initialization of the best lower bound)
4 T ← Branching(T, x̂)
5 Set x = NodeSelection(T ) (initiallization of the currently explored node)
6 while T 6= ∅ do
7 if x is not feasible, i.e. W (x) > Wmax then
8 T ← T \ {x}
9 if T 6= ∅ then

10 x← Backtracking(T )
11 continue
12 if x is a leaf, |x| = N , or the capacity is exhausted, ∆Wmax(x) = 0, then
13 if x is not a leaf, i.e. |x̂| 6= N then
14 Define x̂candidate = x+ ”0”N−|z| (completion of partial solution)
15 else
16 Define x̂candidate = x

17 if x̂ is empty, i.e. |ẑ| = 0 then
18 x̂← x̂candidate

19 Set P̂ = P (x̂candidate) (initialization of incumbent profit)
20 else
21 if P (x̂candidate) > P̂ then
22 x̂← x̂candidate

23 P̂ ← P (x̂candidate)

24 T ← T \ {x}
25 if T 6= ∅ then
26 x← Backtracking(T )
27 continue
28 KP′ = GenerateSubproblem(z) (translation of partial choice into subproblem)
29 ub = P (z) + GreedyUpperBound(KP′)
30 if canBePruned

(
z, ub, l̂b

)
= true then

31 T ← T \ {z}
32 if T 6= ∅ then
33 z ← Backtracking(T, z)
34 continue
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35 lb = ClassicalvsQuantumLowerBound(KP′, x)
36 if lb > l̂b then
37 l̂b← lb

38 T ← Branching(T, x)
39 T ← T \ {x}
40 z ← NodeSelection(T )

return x̂, P̂

Algorithm 8 accesses Algorithm 3 (branching), Algorithm 5 (Greedy upper bound),
Algorithm 6 (node selection) and Algorithm 7 (backtracking). Although we developed
the HQCBB to be part of the general Branch and Bound family, Algorithm 8 somehow
differs structurally from Algorithm 1. In the general environment the standard order
may feed the intuition of how a B&B should work. In our case however, where deciding
on the next subproblem to explore is done at the initialization and is then concluding
each iteration, this adaption is a consequence of having the searching routine split up
into two distinct methods - the node selection after a branching and the backtracking
in case a path in the tree has come to a natural or premature end (cf. Section 4.3).
That being said, the Boolean function canBePruned - which returns ”true” in case that
the node at hand may be pruned off the tree - is outsourced to Algorithm 9. It is in
line with the pruning strategy introduced in Chapter 3.

Algorithm 9: canBePruned
(
z, ub, l̂b

)
1 if |z| = 0 then
2 if ub < l̂b then return true else return false;
3 else
4 if ub ≤ l̂b then return true else return false;

Lower bounds are determined in Line 35 following the concept described in Chapter 3:

Algorithm 10: ClassicalvsQuantumLowerBound(KP, z)
1 Calculate classical lower bound lbclassical = GreedyLowerBound(KP)
2 Calculate quantum lower bound lbquantum = KP-QAOA(KP)
3 return P (z) + max{lbclassical, lbquantum}

It is now about time to assign a meaning to set up a QAOA specifically tailored to the
Knapsack Problem, thereby assigning a meaning to KP-QAOA.
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As already announced in Chapter 3, the QAOA used in our HQCBB (cf. Algorithm 8 or,
more precisely, Algorithm 10) is based on a recent approach for a very different quantum
algorithm tackling the Knapsack Problem proposed by Wilkening et al. [Wil+23]. This
algorithm consists of two driving parts: a state preparation procedure creating a
superposition of all feasible states and a combined version of quantum amplitude
amplification [Bra+00] and quantum maximum finding [DH99]. Appreciating the value
of the completely new procedure how to create a superposition of all feasible states
for a given KP instance, their algorithm can arguably be called QTG-based search1.
Based on what we learned in Section 2.2.3, we will take advantage of the feasible
state preparation solely, enabling us to construct a Grover mixer and thereby design a
QAOA for the Knapsack Problem with an inherent feasibility preservation that allows
to circumvent to softcode the constraint.

5.1. Quantum Tree Generation

The first thing that usually needs to be figured out for the concrete implementation of
a quantum algorithm is the amount of necessary qubits. As described in Section 1.2.2,
any classical bit is replaced by a qubit when translating a combinatorial optimization
problem to the quantum mechanical context. Hence, a register made up by N qubits
is first and foremost required to tackle a KP instance in the sense of Definition 1.14,
consisting of N elements, on a quantum computer. In accordance with Section 1.2.2,
the corresponding Hilbert space describing this item register I is denoted by q

N .
The state preparation in the QTG-based search approach however also needs an
additional auxiliary register of blogWmaxc+ 1 ancilla qubits for maintaining feasibility
among the generated states which shall later be part of the overall superposition by

1What the abbreviation QTG stands for will be clarified soon, for the moment it is just a namesake
for the algorithm.
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keeping track of the residual capacity wmax in every operation step.2 Analogously, the
associated Hilbert space to this capacity register W is qblog Wmaxc+1. The alternative to
introducing ancilla qubits would be to perform mid-circuit measurements; however,
any measurement naturally destroys the current superposition at that respective point
in the state preparation procedure, which is why the former approach is preferred.
Hence, to sum up, any state during the algorithm is represented as |x〉I |wmax〉W for
some x ∈ {1, ..., 2N − 1} using Eq. (1.2.5) and where wmax ∈ {0, ...,Wmax}.

Inspired by the Bellman recursion in Dynamic Programming (cf. Eq. (A.1) in Ap-
pendix A), the objective of the QTG-based search, given a KP instance, is to find N
unitaries Gn, n ∈ {1, ..., N}, one for each item, such that

Gn |x〉I |wmax〉W =
®
|x〉I |wmax〉W , if wn > wmax

1√
2

Ä
|x〉I |wmax〉W + |x+ 2N−n〉I |wmax − wn〉W

ä
, otherwise

(5.1.1)

Gn as in Eq. (5.1.1) generates a uniform superposition of the state corresponding to
the nth item getting packed and the one where it is not in case that the item is still
affordable, otherwise it acts as the identity. The whole state preparation routine then
simply processes all items successively, i.e. it is described by G = ∏N

n=1 Gn. In Dynamic
Programming, the recursive algorithm starts with no item being allowed to be put in the
knapsack. Here, the initial state is given by |0〉I |Wmax〉W where all qubits in the item
register are initialized in state |0〉 while the capacity register encodes the full capacity
as no item is selected.3 Note that, according to Eq. (1.2.5), the state |x+ 2N−n〉I
indeed describes the same assignment of variables as |x〉I except for the nth position
where the corresponding qubit is instead being flipped to state |1〉.4 The underlying
idea of G - with Gn acting as in Eq. (5.1.1) - is to iteratively construct a binary tree
with nodes corresponding to quantum states |x〉I |wmax〉W , always representing full
classical solutions (complete assignments of variables), but to generate only those nodes
that are associated with feasible solutions, making the branching trivial in case the
next item is too expensive. After all N items have been processed, the leafs should
represent the feasible solutions of the given KP instance. This behavior is why G is, in
accordance with the terminology in [Wil+23], called quantum tree generator (QTG).
The example in Fig. 5.1 should make that clearer.

2Beware that a register of size blogWmaxc+ 1 is capable of storing integers up to
2blog Wmaxc+1 ≥ 2log Wmax = Wmax where log denotes the logarithm to base 2.

3Note that this does not mean that all qubits in register W shall initially be in state |1〉, since
2blog Wmaxc+1 ≥ Wmax; the capacity might not be the largest number that can be encoded with
these qubits.

4Since the item register is initialized as |0〉I and every item is considered exactly once, |x〉I cannot
already have xn = 1 before applying Gn
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|000⟩I |3⟩W

|000⟩I |3⟩W |100⟩I |0⟩W

|000⟩I |3⟩W |010⟩I |1⟩W |100⟩I |0⟩W

|000⟩I |3⟩W |001⟩I |2⟩W |010⟩I |1⟩W |011⟩I |0⟩W |100⟩I |0⟩W

· 1√
2

· 1√
2

· 1√
2

· 1√
2

· 1√
2

· 1√
2

· 1√
2

· 1√
2

Figure 5.1.: Visualization of the action of the quantum tree generator G for a simple
exemplary KP instance of three items with profits p = (4, 2, 1), weights w = (3, 2, 1) and
capacity Wmax = 3. G is applied to the initial state |0〉I |Wmax〉W = |000〉I |3〉W . To save the
reader from having to make the translation in Eq. (1.2.5) live, the item register qubits are
written in binary here, directly depicting which items are included and which are not during
the respective steps. Numbers besides branching lines connecting two nodes indicate the extra
phase the child node gets via the application of the corresponding Gn, n ∈ {1, 2, 3}, compared
to its parent. In this example, we obtain five leafs representing the feasible solutions, namely
|000〉I |3〉W , |001〉I |2〉W , |010〉I |1〉W , |011〉I |0〉W and |100〉I |0〉W , where the latter appears
with an amplitude of 1/

√
2 while each of the former four comes with amplitude 1/

√
23. The

optimal solution |100〉I |0〉W happens to end up with the largest amplitude in this example.

Classically, this procedure would need O(2N ) operations; the creation of superpositions
in the quantum case conversely allows to follow different paths simultaneously. As a
consequence, the cost of generating the tree via the procedure above can be found to
not scale with the maximum number of possible nodes but with the amount of items
instead, yielding a computing time of order O(N). However, the advantage of this
exponential speedup in the tree generation generally comes along with exponentially
small amplitudes of the single states in the final superposition.

Let us sum up the essence of what we have seen so far as a direct consequence of the
explicit construction in Eq. (5.1.1).

Proposition 5.1. Let Wmax be the capacity of a given a KP instance in the sense of
Definition 1.14. Then, applying the quantum tree generator G = ∏N

n=1 Gn to the initial
state |0〉I |Wmax〉W generates a superposition of all and only feasible solution states,
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denoted by
|KP〉 = G (|0〉I |Wmax〉W ) . (5.1.2)

How G can be implemented using known quantum gates will be discussed in detail in
Part III, more specifically, Section 6.1. This chapter is only supposed to elaborate the
HQCBB algorithm for the Knapsack Problem without touching implementation-related
questions such as gate counts, required circuit depths and the like.

5.2. Grover-Mixer QAOA

With the discussion of the quantum tree generation being done, we can finally construct
the QAOA that shall be employed in the HQCBB for the Knapsack Problem. As already
emphasized in the beginning of Section 5.1, the quantum tree generation procedure
strongly suggests to pursue the Grover-mixer approach presented in Section 2.2.3.

To become concrete, |KP〉 will play the role of the desired initial state, meaning that
our (Grover) mixer will be given by

B = |KP〉 〈KP| . (5.2.1)

Thanks to Section 5.1, we already know how to prepare the initial state: via G as
in Eq. (5.1.2). At risk of stating the obvious, G therefore corresponds here to what
US was in Section 2.2.3. However, in order to employ the quantum tree generation
as state preparation procedure in a Gover mixer QAOA, one discrepancy between G
and a general US has to be overcome. More precisely, while G acts on the initial state
|0〉I |Wmax〉W , Eq. (2.2.19) states that a proper US prepares the desired QAOA initial
state by operating on |0〉. Hence, G needs to be extended by an initial unitary that
transforms |0〉W 7→ |Wmax〉W in order to obtain our final state preparation; the result
shall be denoted by G. This is,

|KP〉 = G (|0〉I |0〉W ) (5.2.2)

by Proposition 5.1. Although finding the unitary |0〉W 7→ |Wmax〉W is straight forward,
its discussion is postponed to the implementation part (cf. Section 6.1). Accordingly,
the Grover mixing unitaries are induced by Eqs. (5.2.1) and (5.2.2) to evaluate to

UB(β) = e−iβ|KP〉〈KP| = G
Ä
1−
Ä
1− e−iβ

ä
|0〉 〈0|

ä
G† (5.2.3)

where the last equality can be derived analogously to Eq. (2.2.22), based on the unitarity
of G, which has to be verified after discussing how to realize the transformation
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|0〉W 7→ |Wmax〉W , taking G to G. So far, so good. In accordance with what we said in
Section 2.2.3 about the general Grover-mixer ansatz, our QAOA employs the standard
phase separation unitaries UP (γ) = e−iγP with objective Hamiltonian P , determined
by the KP objective function in Eq. (1.3.1) and defined operator-valued via Eq. (1.2.6).
Now everything should be configured in order to establish the capability of setting up
Algorithm 2 for the Knapsack Problem.

However, the attentive reader may have noticed that there is one subtlety that should
at least briefly be addressed in a consistent thesis as this one aims to be. Compared to
the desired initial state |F 〉 given by Eq. (2.2.18) in the general Grover-mixer approach,
the result of applying the QTG, |KP〉, is not a uniform superposition of the feasible
solution states with all of them sharing the same amplitude 1/

√
|feas(KP)|. In contrast,

Eq. (5.1.1) implies that the single states making up that superposition may have any
of the amplitudes 1/

√
2n, n ∈ {1, ..., N}, meaning that they will in general not be

equal.5 Since any KP instance handled in this thesis has a non-trivial solution space
due to assumption (ii) in Section 1.3, some states will generally have larger amplitudes
than the desired uniform one, others will naturally end up with lower values.6 Due
to this deviation between |F 〉 and |KP〉, we lose the property of the Grover mixing
unitaries to mix equal feasible solutions at equal amplitudes (cf. Proposition 2.6). The
second property, in contrast, is clearly upheld: Since only the relations between the
different amplitudes have changed but not the states in the superposition themselves,
we can infer that UB(β) = e−iβ|KP〉〈KP| also maps feasible states to feasible states
without the need of any further reasoning, making B = |KP〉 〈KP| a valid choice for
a mixer according to Hadfield [Had18] in the first place. Of course, we could aim at
transforming |KP〉 into a uniform superposition using the results of applying G once.
However - especially based on the rather moderate consequences seen above when using
|KP〉 as in Eq. (5.1.2) instead of |F 〉 as in Eq. (2.2.18) - this is considered not worth
the computational overhead in terms of both gates and qubits. Generating a uniform
superposition using the state preparation may, in general, be desirable for inducing
an unbiased mixing effect; however, it seems rather artificial when desperately trying
to balance the unequal amplitudes just in order to satisfy the alleged ideal conditions
imposed by Bärtschi and Eidenbenz [BE20].

5Here we see the potentially exponentially small amplitudes mentioned above.
6Note that assumption (iii) on the other hand implies that an amplitude of 1/

√
20 = 1 is not possible.

Otherwise no item would be affordable without immediately exceeding the capacity, making the
optimal solution trivial. This is, there is at least one branching in the tree generated by the QTG.
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QAOA Implementation

For our QAOA, constructing circuits for the unitaries that collectively realize the
quantum tree generation G and thereby also the preparation of the desired initial state
|KP〉 is a major open point. Moreover, up to this point it not entirely clear how to
decompose the (standard) phase separation unitaries and the (Grover) mixing unitaries
into well-known single gates. These things are to be elaborated here.

6.1. State Preparation via QTG

As preparing the initial state, to which the phase separation and mixing unitaries are
then applied alternately, is really the first part of any QAOA, the QTG circuit is the
natural choice to start the discussion of the QAOA implementation. As described in
Section 5.1, the whole QTG routine implementing G is composed of N structurally
equal subcircuits corresponding to the Gn, n ∈ {1, ..., N}. Eq. (5.1.1) then implies that
each of these can itself be separated in two parts, one related to the item register I
and the other to the capacity register W . As kind of a recap, the former shall put the
I-qubits in a superposition of the next item being included and excluded based on
the output of evaluating whether it is still affordable; the latter, on the other hand, is
responsible for updating the residual capacity encoded across the W -qubits depending
on whether we were able include the next item in the knapsack without breaking
feasibility. Therefore, both parts mutually affect each other.

6.1.1. Digital Comparator

The first check deciding on including the next item and acting upon the output can
be realized by exploiting a classical technique comparing two binary numbers that is
called the digital comparator. We will start with working out the circuit for a single
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Gn in the sense of Eq. (5.1.1) and connect them in series afterwards to obtain the full
QTG circuit. Considering the nth item, we need an additional register R to encode its
weight wn and make it comparable. This register R is, in fact, a classical register, as all
the items weights are given as input to the respective KP instance at hand. In theory,
blogwnc+ 1 classical bits would be sufficient to encode the weight. However, due to
assumption (iii) in Section 1.3, register R needs to be enlarged to size blogWmaxc+ 1
in order to be able to compare the binary representations of wn and wmax for the latter
occupying values in {1, ...,Wmax}.

The rationale behind the (classical) digital comparator is to start at the most significant
bit and successively compare the bit values of the two numbers whose relation we want
to figure out. Suppose we want to compare two, say, integer numbers a, b ∈ N given in
binary representation a = a1 · · · aA, b = b1 · · · bB with A = blog ac+ 1, B = blog bc+ 1.
Now define κj := ajbj + ajbj for j ∈ {1, ...,M} with M := max{A,B}. Then, a = b if
and only if κj = 1 ∀ j. Using this and denoting aj = (aj + 1) mod 2, we can state a
logical expression evaluating to 1 in case a < b and to 0 otherwise as follows:

(a < b) = a1b1 + κ1a2b2 + κ1κ2a3b3 + · · ·+ κ1x2 · · ·xM−1aMbM = ∑M
j=1

Ä∏j−1
i=1 κi

ä
ajbj.

(6.1.1)
In case that aj = bj , the corresponding term in Eq. (6.1.1) is zero and κj = 1; once the
iterative procedure found an index j∗ ∈ {1, ...,M} for which aj

∗ = 0 < 1 = bj
∗ , this

term evaluates to 1 and furthermore induces every following summand to vanish for
always multiplying with κj

∗ = 0 afterwards. As terms for which aj = 1 > 0 = bj will
also be zero since aj = 0 = bj in this case, Eq. (6.1.1) cannot exceed a value of 1 and
returns this if and only if a > b.

Before translating the digital comparator technique to our situation, we need to know
what should be done in the different outcome cases. Since the QTG routine starts
from state |0〉I |Wmax〉W , Gn acts on states of the form |x1 · · · xn−100 · · · 0〉I |wmax〉W as
emphasized in Section 5.1. According to Eq. (5.1.1), the item register qubits shall be
put in superposition as

|x〉I = |x1 · · ·xn−100 · · · 0〉I 7→
1√
2

(|x1 · · · zx−100 · · · 0〉I + |x1 · · ·xn−110 · · · 0〉I)

= 1√
2
Ä
|x〉I + |x+ 2N−n〉I

ä
in case that wn ≤ wmax. This can trivially be achieved by applying a Hadamard gate
on the nth item-register qubit, see Eq. (2.2.6). The fact that we want to actually
perform this transformation in case of ”≤” instead of ”<” as in the digital comparator
complicates things a little. We can overcome this by either checking for the opposite, i.e.
wn > wmax, implying the need to flip all W -qubits and all classical R-bits before and
after the comparison, or we could append an additional check for simultaneous equality
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in all W and R positions. However, we choose a third option, namely first applying the
Hadamard on the nth I-qubit on the assumption that wn ≤ wmax holds, then checking
for wn > wmax via the digital comparator logic and finally revert the first operation
in case this check evaluates to ”true” by applying H once more, leveraging H2 = 1.
This way, we only need one additional single-qubit gate instead of 2blogWmaxc + 1
single-qubit gates or one extra (blogWmaxc+ 2)-qubit gate.

Based on that strategy we can now incorporate the logic of Eq. (6.1.1) to construct
the quantum circuit for the I-register part of Gn; the result is shown in Fig. 6.1.1

· · ·

· · ·

· · ·

· · ·

...

· · ·

· · ·

· · ·

· · ·

· · ·

...

· · ·

· · ·

I[n] H H H H H H

W [1]

W [2]

W [3]

W [⌊logWmax⌋+ 1− 1]

W [⌊logWmax⌋+ 1]

R[1]

R[2]

R[3]

R[⌊logWmax⌋+ 1− 1]

R[⌊logWmax⌋+ 1]

Figure 6.1.: Quantum circuit implementing the first part of Gn, putting the nth item-register
qubit in a superposition of being included and excluded in the knapsack based on whether it
is still affordable, inspired by the digital comparator logic. We spare showing all N qubits in
register I, since Gn only acts on the nth one by design (cf. Section 5.1, especially Eq. (5.1.1)).
The red line separates the two phases where wn ≤ wmax is assumed first and wn > wmax
checked afterwards to potentially rollback. The black squares denote a control on the equality
of the corresponding pair of W and R entries with the same position. Since R is a classical
register, just retrieving the bit value of (wn)j implies whether H is controlled on W [j] in
state |0〉 or |1〉. This is, the third H gate (counted from the left) is simultaneously controlled
on qubit W [1] being in state |R[1]〉 and W [2] being in state |0〉 if R[2] = 1.

1In this thesis, I exclusively use the Quantikz package [Kay23] for drawing quantum circuits. Please
consult Appendix C for a brief introduction into the common notation.
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This circuit works as intended for the same reason the digital comparator defined
via Eq. (6.1.1) obeys the desired behavior; there is especially at most one H gate
being actually applied on I[n] after the red line, since the different controls are
indeed mutually exclusive. Concerning the classical controls on bit value 1 in the
R-register, they translate to simple ”If” conditions in the actual implementation:
R[j] = 0 automatically means that the respective control failed and the corresponding
Hadamard does not need to be applied at all. Summarizing, this first part of Gn can
be implemented using at most blogWmaxc+ 2 gates.

6.1.2. Subtraction via Quantum Fourier Transform

With the I-register part being done, we can now discuss how (and in which cases) to
update the residual capacity encoded in register W . After executing subcircuit Fig. 6.1
with input state |x〉I |wmax〉W , the nth item-register qubit is in an equal superposition
of states |0〉 (meaning that it is exluded) and |1〉 (corresponding to it being included) if
its weight does not exceed the remaining capacity. Only in this case, the value stored
in register W needs to be adjusted at all. However, the update clearly just needs to be
performed for the path where the item was selected. Therefore, we need to apply a
subtraction controlled on qubit I[n] being in state |1〉. Among different possibilities to
implement addition (or subtraction) on a quantum computer, there is one standard
approach by Draper [Dra00] that uses the Quantum Fourier Transform (QFT).

To reconstruct the setting in [Dra00], let |a〉 = ⊗L
l=1 |an〉 = |a1〉 ⊗ · · · ⊗ |aL〉 be an

L-qubit state where a = a1 · · · aL is the binary representation of a ∈ N. Suppose we
want to add a classically given number b ∈ N to the value encoded in the corresponding
register of size L, for which we assume b ≤ a such that it can be encoded using L
(classical) bits, yielding the binary representation b = b1 · · · bL. In line with [Dra00],
introduce the notation e(x) = e2πix. Moreover, let |φl(a)〉 := 1√

2

Ä
|0〉+ e

Ä
a/2l
ä
|1〉
ä

for l ∈ {1, ..., L}. The Quantum Fourier Transform of |a〉 is then defined as the map
|al〉 7→ |φl(a)〉, or |a〉 7→ ⊗L

l=1 |φl(a)〉 =: |φ(a)〉 on an aggregated level, which can be
achieved using the following circuit:

· · · · · ·

· · · · · ·

...
...

· · ·

· · ·

|a1⟩ H Φ(2) Φ(N − 1) Φ(N) |ϕ1(a)⟩

|a2⟩ H Φ(N − 2) Φ(N − 1) |ϕ2(a)⟩

|aL−1⟩ H Φ(2) |ϕL−1(a)⟩

|aL⟩ H |ϕL(a)⟩

Figure 6.2.: Quantum circuit implementing QFT on a qubit register of size L.
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Here, Φ(l) := |0〉 〈0| + e
Ä
1/2l
ä
|1〉 〈1| denote phase or rotation gates with e

Ä
1/2l
ä

being the lth root of unity. That the circuit shown in Fig. 6.2 indeed maps |al〉 7→
|φl(a)〉 ∀ l ∈ {1, ..., L} can be seen by first expressing the controlled phase gates as

(
CjΦ(k)

)
|al〉 =

®
Φ(k) |al〉 =

Ä
|0〉 〈0|+ e

Ä
1/2k
ä
|1〉 〈1|

ä
|al〉 , if aj = 1

1 |al〉 = (|0〉 〈0|+ |1〉 〈1|) |al〉 , if aj = 0

=
Å
|0〉 〈0|+ e

Å
aj

2k

ã
|1〉 〈1|

ã
|al〉 , j > l, j, k ∈ {2, ..., L}, l ∈ {1, .., L},

then, supposing l < L in the following, realizing and exploiting the rewriting

1√
2

(
|0〉+ e

(al

2

)
|1〉
)

= 1√
2
(
|0〉+ eπial |1〉

)
=
{

1√
2(|0〉+ e0 |1〉) = 1√

2(|0〉+ |1〉) = |+〉 , if al = 0
1√
2(|0〉+ eπi |1〉) = 1√

2(|0〉 − |1〉) = |−〉 , if al = 1
= H |al〉 ,

such that the transformation of |al〉 may finally be comprehended step by step as

|al〉7→ H |al〉 = 1√
2

(
|0〉+ e

(al

2

)
|1〉
)

7→ (Cl+1Φ(2))H |al〉 = 1√
2

(
|0〉 〈0|+ e

(al+1

22

)
|1〉 〈1|

)(
|0〉+ e

(al

2

)
|1〉
)

= 1√
2

(
|0〉+ e

(al

2 + al+1

22

)
|1〉
)

7→ · · ·
7→ (CLΦ(L− l + 1)) · · · (Cl+1Φ(2))H |al〉

= 1√
2

Å
|0〉+ e

Å
al

2 + al+1

22 + · · ·+ aL

2L−l+1

ã
|1〉
ã

= 1√
2

Ç
|0〉+ e

Ç
L∑

j=l

aj

2j+1−l

å
|1〉
å

= 1√
2

Ç
|0〉+ e

Ç
L∑

j=l

aj2−(j+1−l)
å
|1〉
å

= 1√
2

(|0〉+ e(0.alal+1 · · · aL) |1〉)

= 1√
2

Å
|0〉+ e

Å
a

2l

ã
|1〉
ã

= |φl(a)〉 ,

where 0.alal+1 · · · aL denotes the binary fraction, for which e(0.al · · · aL) = e(a/2l) holds
as argued in [Dra00]. Hence, Fig. 6.2 indeed displays the QFT circuit, whose output
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is

QFT |a〉 =
L⊗

l=1
|φl(a)〉 =

L⊗
l=1

1√
2

Å
|0〉+ e

Å
a

2l

ã
|1〉
ã

= 1√
2L

∑
z∈{0,1}L

Ç
L∏

l=1
zle

Å
a

2l

ãå
|z〉 = 1√

2L

∑
z∈{0,1}L

e

Ç
a

L∑
l=1

zl2−l

å
|z〉

= 1√
2L

∑
z∈{0,1}L

e (a 0.z1 · · · zL) |z〉 = 1
2L/2

∑
z∈{0,1}L

e

Å
az

2L

ã
|z〉 ,

from which it now becomes clear why the transformation |a〉 7→ |φ〉 is called Quantum
Fourier Transform. One seemingly obvious but however non-irrelevant observation
from Fig. 6.2 is that the Quantum Fourier Transform can be implemented using single-
and two-qubit gates solely. By simple counting, the QFT circuit consists of

L+ (L− 1) + · · ·+ 2 + 1 =
L−1∑
l=0

(L− l) =
L−1∑
l=0

L−
L−1∑
l=0

l = L2 − L(L− 1)
2 = L(L+ 1)

2

gates, i.e. the amount of gates required to implement the Quantum Fourier Transform
on a state that can be encoded using L qubits is of order O(L2). In contrast, the best
classical algorithms for computing the discrete Fourier Transform on the considered 2L

data points, such as the Fast Fourier Transform, feature a gate complexity of order
O(2L log 2L) = O(L2L), meaning that the implementation of the Quantum Fourier
Transform in Fig. 6.2 provides an exponential speedup compared to its classical analogue.
However, this success comes with a grain of salt, since accessing the probabilities of
the final states requires numerous applications of the QFT circuit.

The circuit that performs the actual addition now highly resembles the QFT circuit:

· · · · · ·

· · · · · ·

...
...

· · ·

· · ·

· · ·

· · ·

...
...

· · ·

· · ·

|ϕ1(a)⟩ Φ(1) Φ(2) Φ(L− 1) Φ(L) |ϕ1(a+ b)⟩

|ϕ2(a)⟩ Φ(1) Φ(L− 2) Φ(L− 1) |ϕ2(a+ b)⟩

|ϕL−1(a)⟩ Φ(1) Φ(2) |ϕL−1(a+ b)⟩

|ϕL(a)⟩ Φ(1) |ϕL(a+ b)⟩

(b1) (b1)

(b2) (b2)

(bL−1) (bL−1)

(bL) (bL)

Figure 6.3.: Quantum circuit implementing the addition of a classically given number b to
a QFT state |φ(a)〉 on a qubit register of size L.
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It takes φl(a) 7→ φl(a+ b) and therefore overall implements the transformation φ(a) 7→
φ(a+ b), following from an analogous calculation compared to the one we saw above
for the QFT circuit behavior:

|φl(a)〉 7→ IFbl=1(Φ(1)) |φl(a)〉 = IFbl=1(Φ(1)) 1√
2

Å
|0〉+ e

Å
a

2l

ã
|1〉
ã

= IFbl=1(Φ(1)) 1√
2

(|0〉+ e(0.alal+1 · · · aL) |1〉)

= 1√
2

IFbl=1(Φ(1))
Ç
|0〉+ e

Ç
L∑

j=l

aj

2j+1−l

å
|1〉
å

= 1√
2

Ç
|0〉+ e

Ç
L∑

j=l

aj

2j+1−l + bl

21

å
|1〉
å

7→ IFbl+1=1(Φ(2))IFbl=1(Φ(1)) |φl(a)〉

= 1√
2

Ç
|0〉+ e

Ç
L∑

j=l

aj

2j+1−l + bl

21 + bl+1

22

å
|1〉
å

7→ · · ·
7→ IFbL=1(Φ(L− l + 1)) · · · IFbl+1=1(Φ(2))IFbl=1(Φ(1)) |φl(a)〉

= 1√
2

Ç
|0〉+ e

Ç
L∑

j=l

aj

2j+1−l + bl

21 + bl+1

22 + · · ·+ bL

2L−l+1

å
|1〉
å

= 1√
2

Ç
|0〉+ e

Ç
L∑

j=l

aj

2j+1−l +
L∑

j=l

bj

2j+1−l

å
|1〉
å

= 1√
2

(|0〉+ e (0.alal+1 · · · aL + 0.blbl+1 · · · bL) |1〉)

= 1√
2

Å
|0〉+ e

Å
a

2l + b

2l

ã
|1〉
ã

= |φl(a+ b)〉 .

Since the bits b1, ..., bL are given classically, we here face the same situation as in the
discussion of the digital comparator (cf. Section 6.1.1), namely that the controls on
these classical bits simply evaluate to classical ”If” statements, which are just a matter
of coding. As a consequence, the circuit depicted in Fig. 6.3 may imply the application
of L(L+ 1)/2 gates, but it does not have to. Notice that in contrast to the QFT circuit
where the Hadamard gates require a certain computing order, all operations in the
circuit in Fig. 6.3 commute. Therefore, multiple gates acting on different qubits may be
collected in groups which can then be executed simultaneously, yielding a computing
time speedup due to parallelism. Among several possibilities, we could, for instance,
combine all phase gates controlled by the same classical bit bl. The result is displayed
in Fig. 6.4.
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· · · · · · · · ·

· · · · · · · · ·

...
...

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

...
...

· · · · · · · · ·

· · · · · · · · ·

|ϕ1(a)⟩ Φ(1) Φ(2) Φ(L− 1) Φ(L) |ϕ1(a+ b)⟩

|ϕ2(a)⟩ Φ(1) Φ(L− 2) Φ(L− 1) |ϕ2(a+ b)⟩

|ϕL−1(a)⟩ Φ(1) Φ(2) |ϕL−1(a+ b)⟩

|ϕL(a)⟩ Φ(1) |ϕL(a+ b)⟩

(b1) (b1)

(b2) (b2)

(bL−1) (bL−1)

(bL) (bL)

Figure 6.4.: Quantum circuit implementing the addition of a classically given number b to
a QFT state |φ(a)〉 on a qubit register of size L with operations being parallelized according
to the classical bit on which they are controlled. The red lines separate the gate collections
that are executed simultaneously.

Assuming a quantum computer to have the necessary capabilities to execute up
to L single-qubit operations in parallel, Fig. 6.4 implies that the quantum addition
transforming |φ(a)〉 7→ |φ(a+ b)〉 may be performed within a maximum L time slices.

However, the original motivation of adding a classically given number b to a quantum
state |a〉 suggests to figure out how to realize the transformation |a〉 7→ |a+ b〉. Based
on what we saw so far, and denoting the circuit in Fig. 6.4 by Add(b), this can now
easily be achieved via the composed routine

|a〉 QFT7−−→ |φ(a)〉 Add(b)7−−−−→ |φ(a+ b)〉 QFT−1

7−−−−→ |a+ b〉 .

Coming back to our original motivation of subtracting the weight wn of the nth item,
given as input to our KP instance, from the state |wmax〉W encoding the residual
capacity in the (blogWmaxc+ 1)-qubit register W , we can now see that adapting the
quantum addition routine by Draper [Dra00] to implement subtraction instead is
indeed pretty simple - just reverting the signs in the phase gates applied in Figs. 6.3
and 6.4 yields that the b-terms get subtracted from the a-sum in the exponential
throughout the above derivation following Fig. 6.3. This is, Φ(n) is replaced by its
inverse Φ(n)−1 = Φ(−n) in the adjusted circuit, which shall then accordingly be referred
to as Sub(wn). The parallelized version of this circuit is, for the sake of completeness,
drawn in Fig. 6.5.

Combining Fig. 6.2 and a controlled version of the circuit in Fig. 6.5 now yields the final
quantum circuit that implements the conditional subtraction of wn from the capacity
register based on whether the nth item register qubit is in state |1〉, which is the case if
and only if the check wn < wmax evaluated to ”true” (cf. Section 5.1). Consult Fig. 6.6
for a schematic summary.

Page 78 of 141



Chapter 6. QAOA Implementation

· · · · · ·

· · · · · ·

...
...

· · · · · ·

· · · · · ·

· · · · · ·

...
...

· · · · · ·

|ϕ1(wmax)⟩ Φ(1)−1 Φ(2)−1 Φ(⌊logWmax⌋+ 1)−1 |ϕ1(wmax − wn)⟩

|ϕ2(wmax)⟩ Φ(1)−1 Φ(⌊logWmax⌋)−1 |ϕ2(wmax − wn)⟩

|ϕN (wmax)⟩ Φ(1)−1 |ϕN (wmax − wn)⟩

((wn)1) ((wn)1)

((wn)2) ((wn)2)

((wn)⌊logWmax⌋+1) ((wn)⌊logWmax⌋+1)

Figure 6.5.: Quantum circuit implementing Sub(wn).

...

...

I[n]

W [1]

QFT

Sub(wn)

QFT−1

W [2]

W [⌊logWmax⌋]

W [⌊logWmax⌋+ 1]

R[1]

R[2]

R[⌊logWmax⌋]

R[⌊logWmax⌋+ 1]

Figure 6.6.: Schematic quan-
tum circuit for the full controlled
quantum subtraction of wn from
the value encoded in the capacity
register W , conditioned on the
state of the nth I-register qubit.

What shall be clarified is how the whole subtraction circuit (Fig. 6.5) is supposed to
be controlled in Fig. 6.6. In this case, it is indeed straight forward, since the Sub(wn)
circuit only consists of single-qubit gates (controls on classical bits transform to classical
”If” conditions): Each of them is controlled on I[n] being in state |1〉 individually,
making the inverse phase operations two-qubit control gates. Of course, the execution
of the QFT circuit and its inverse on the W -register could also be controlled on I[n]
in the same way as the subtraction, since the Quantum Fourier Transform is only
needed in case that the subtraction shall actually be performed. However, the resulting
increase in gate complexity can be avoided, as QFT and QFT−1 cancel each other out
anyway if CI[n]Sub(wn) acts as the identity.

Translating the gate counts we did for the circuits of QFT and Sub(wn) to the case
of blogWmaxc + 1 qubits, the full controlled quantum subtraction shown in Fig. 6.6
necessitates the application of at most 3(blogWmaxc+ 1)(blogWmaxc+ 2)/2 gates.
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Taking into account parallelization implies that this can be achieved within a maximum
of

2(blogWmaxc+ 1)(blogWmaxc+ 2)
2 +(blogWmaxc+1) = (blogWmaxc+1)(blogWmaxc+3)

time slices. Both of these results still belong to the regime O(log(Wmax)2).

6.1.3. Full Circuit

Now where both components - the item inclusion and the weight subtraction both
based on its affordability - have been worked through, concatenating them yields the
final circuit for Gn:

· · ·

· · ·

· · ·

· · ·

...

· · ·

· · ·

· · ·

· · ·

· · ·

...

· · ·

· · ·

I[n] H H H H H H

W [1]

QFT

Sub(wn)

QFT−1

W [2]

W [3]

W [⌊logWmax⌋]

W [⌊logWmax⌋+ 1]

R[1]

R[2]

R[3]

R[⌊logWmax⌋]

R[⌊logWmax⌋+ 1]

Figure 6.7.: Quantum circuit implementing Gn.

Fig. 6.7 features a complexity evaluating to O(log(Wmax)2) thanks to an upper limit
of

(blogWmaxc+ 2) + (blogWmaxc+ 1)(blogWmaxc+ 3)
= (blogWmaxc+ 1)(blogWmaxc+ 4) + 1
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under the assumption of parallelization or

(blogWmaxc+ 2) + 3
2(blogWmaxc+ 1)(blogWmaxc+ 2)

= (blogWmaxc+ 2)
(3

2blogWmaxc+ 7
2
)
.

without. Fig. 6.7 is even sufficient to obtain the circuit for the full quantum tree
generation procedure, as G = ∏N

n=1 Gn implies that it is just given by cascading all
Gn circuits. However, recall from Section 5.2 that the final state preparation of our
Grover-mixer QAOA is not given by G but G instead, ensuring that the desired initial
state is prepared from |0〉I |0〉W (cf. Eqs. (5.1.2) and (5.2.2)). Also recall that we
postponed the discussion of how to unitarily transform |0〉W 7→ |Wmax〉W . Here is the
appropriate place to elaborate on that. Since the capacity Wmax is classically given
as input to the respective KP instance at hand, we just need to retrieve its binary
representation in the sense of Eq. (1.2.5) and flip all qubits whose position correspond
to a bit value 1 in this binary representation of Wmax, see Fig. 6.8.

...

...

|0⟩W [1]

|Wmax⟩W

|0⟩W [2]

|0⟩W [⌊logWmax⌋+1−1]

|0⟩W [⌊logWmax⌋+1]

R[1]

R[2]

R[⌊logWmax⌋]
R[⌊logWmax⌋+ 1]

Figure 6.8.: Quantum circuit
implementing the transformation
|0〉W 7→ |Wmax〉W . The classical
register R is used to encode the
capacity Wmax.

By the usual reasoning, Fig. 6.8 tells that the number of gates required to transform
|0〉W 7→ |Wmax〉W is bounded from above by blogWmaxc+ 1. Thanks to parallelization,
it may be executed in only one time step. For being composed of single-qubit unitary
gates, the operation implemented by the circuit in Fig. 6.8 is clearly unitary.

Now we have everything together to provide the full quantum circuit for the state
preparation G, see Fig. 6.9.

By simply adding up exact values and upper bounds for the gate cost of the single
constituents displayed in Fig. 6.9, the whole state preparation procedure has a gate
requirement smaller or equal to

(blogWmaxc+ 1) +N(blogWmaxc+ 2)
(3

2blogWmaxc+ 7
2
)
.
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G1

GN

· · · · · ·

...

· · · · · ·

· · · · · ·

...

· · · · · ·

· · · · · ·

...

· · · · · ·

· · · · · ·

|0⟩I[1] H H

|KP⟩

|0⟩I[N ] H H

|0⟩W [1]

DC(w1 > wmax)

QFT

Sub(w1)

QFT−1 DC(wN > wmax) QFT Sub(wN ) QFT−1

|0⟩W [⌊logWmax⌋+1]

(w1) (w1)

(wN ) (wN )

(Wmax) (Wmax)

Figure 6.9.: Quantum circuit implementing G. The red line separate the initial transfor-
mation |0〉W 7→ |Wmax〉W and the application of G. There is one classical register of size
blogWmaxc + 1 per Gn subcircuit, encoding the corresponding weight wn, plus one of the
same size for the capacity. The larger control symbols on this last classical register represent
the decomposition shown in Fig. 6.8. The gate DC(wn > wmax) abbreviates the Digital
Comparator part of the circuit in Fig. 6.1. Empty gates in this context mean that the
respective classical register used in the circuits in Fig. 6.1 or Fig. 6.5 is separated from the
capacity register W by some other classical register(s).

By employing parallelization, the execution of G according to Fig. 6.9 may be stream-
lined to at most

1 +N
(
(blogWmaxc+ 1)(blogWmaxc+ 4) + 1

)
time slices. Both counts correspond to a complexity O(N log(Wmax)2).

6.2. Grover Mixing and Phase Separation Unitaries

As discussed in Chapter 5, the state preparation represents the largest part in our
Grover mixer approach for the Knapsack Problem in terms of circuit construction and
actual implementation. What remains to be done in order to achieve a fully specified
QAOA implementation is to elaborate on the mixing unitaries UB(β) = e−iβ|KP〉〈KP|,
determined by the initial |KP〉, which itself is obtained via the quantum tree generation
according to Eq. (5.1.2), and the phase separation unitaries UP (γ) = e−iγP with
objective Hamiltonian P (cf. Section 5.2). Recall that Eq. (5.2.3) provides a more
concrete expression for UB(β), from which the corresponding circuit can be inferred
to a large extent thanks to the already derived QTG circuit for G in Fig. 6.9. More
specifically, we only need to consider the middle part of Eq. (5.2.3), for which the
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following rewriting facilitates the intuition:

1−
Ä
1− e−iβ

ä
|0〉I 〈0|I =

(
|0〉I 〈0|I +

2N −1∑
z=1
|z〉I 〈z|I

)
−
Ä
1− e−iβ

ä
|0〉I 〈0|I

= e−iβ |0〉I 〈0|I +
2N −1∑
z=1
|z〉I 〈z|I

where 1 here denotes the identity on the N item-register qubits and |0〉 ≡ ⊗N
n=1 |0〉I[n]

via Eq. (1.2.5). This is, UB(β) acts as the identity unless all qubits are in state zero,
in which case it introduces a phase factor e−iβ. Hence, UB(β) can be implemented by
applying the single-qubit phase gate P (0)

I[m](θ) = eiθ |0〉I[m] 〈0|I[m] + |1〉I[m] 〈1|I[m] on an
arbitrary but fixed position m ∈ {1, ..., N} and controlling it on all the others qubits
being in state zero. The concrete qubit register entry m is indeed irrelevant, as the
phase factor may be pulled through the Kronecker product. We will, by arbitrary
choice, select m = N , such that

C
(0,...,0)
I[1,...,N−1]P

(0)
I[N ](−β) =

Ç
N−1⊗
n=1
|0〉I[n] 〈0|I[n]

å
⊗ P (0)

I[N ](−β) +
2N−1−1∑

z=1
|z〉I[1,...,N−1] 〈z|I[1,...,N−1] ⊗ 1I[N ]

= e−iβ

Ç
N⊗

n=1
|0〉I[n] 〈0|I[n]

å
+
Ç

N−1⊗
n=1
|0〉I[n] 〈0|I[n]

å
⊗ |1〉I[N ] 〈1|I[N ] +

2N −1∑
z=2
|z〉I 〈z|I

= e−iβ |0〉I 〈0|I + |1〉I 〈1|I +
2N −1∑
z=2
|z〉I 〈z|I = e−iβ |0〉I 〈0|I +

2N −1∑
z=1
|z〉I 〈z|I .

Based on what we just learned, Eq. (5.2.3) implies that the quantum circuit for the
mixing unitary UB(β) can be constructed by sandwiching the (N − 1)-fold controlled
phase gate with G† and G, see also [BE20]. Fig. 6.10 displays the schematic result.

Note that Fig. 6.10 underpins again why Bärtschi and Eidenbenz [BE20] sell their
approach as ”shifting complexity from mixer design to state preparation” - once
the state preparation (here given by the quantum tree generation) is known, the
implementation of the mixing unitaries is rather trivial. Obviously, the gate count
of UB(β) is twice that for G plus one, meaning that the complexity falls in the same
regime O(N log(Wmax)2) (independent of with or without the aid of parallelism).

Now recall that the phase separation unitaries are given by UP (γ) = e−iγP as in
the unconstrained case (cf. Section 2.2.2), making their implementation a lot easier.
UP acts as UP (γ) |x〉I = e−iγP |x〉I = e−iγP (x) |x〉I on a computational basis state
|x〉I , x ∈ {0, 1}

N , and can thereby be linearly extended to the full underlying Hilbert
space qN

I modeling the N item-register qubits. Recalling Eq. (1.3.1), the objective
function P (x) = P (x1 · · ·xN ) adds up all the profits pn whose corresponding items are
included in the knapsack, i.e. for which xn = 1; in case xn = 0 the objective function
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...

...

...

I[1]

G† G

I[2]

I[N − 1]

I[N ] P (0)(−β)

W [1]

W [⌊logWmax⌋+ 1]

R1

RN

Figure 6.10.: Quantum
circuit implementing the
Grover mixing unitary
UB(β) for the Knapsack
Problem according to
Eq. (5.2.3) with state
preparation G as in Fig. 6.9.
The red lines separate the
three components of UB(β).
As usual, each classical
register Rn consists of
blogWmaxc + 1 classical
bits.

remains unchanged. Thus, UP (γ) is implemented by ensuring to add a phase factor
e−iγpn whenever xn = 1 for n ∈ {1, ..., N}. Compare single-qubit phase gates:

P (1)(θ) |xn〉 =
Ä
|0〉 〈0|+ eiθ |1〉 〈1|

ä
|xn〉 =

®
|xn〉 , if xn = 0
eiθ |xn〉 , if xn = 1

´
= eiθxn |xn〉 ,

meaning that applying P (1)
I[n](−γpn) to every item-register qubit n realizes UP (γ) as

UP (γ) |x〉I =
Ç

N∏
n=1

P
(1)
I[n](−γpn)

å
|x1 · · ·xN〉I =

N⊗
n=1

P
(1)
I[n](−γpn) |xn〉I[n]

=
N⊗

n=1
e−iγpnxn |xn〉 =

Ç
N∏

n=1
e−iγpnxn

å
|x1 · · ·xN〉I

= e−iγ
∑N

n=1 pnxn |x1 · · ·xN〉I = e−iγP (x) |x〉I = e−iγP |x〉I .

Therefore, the circuit UP (γ), consisting of N single-qubit gates, is as simple as:

...
...

I[1] P (1)(−γ p1)

I[2] P (1)(−γ p2)

I[N − 1] P (1)(−γ pN−1)

I[N ] P (1)(−γ pN )

Figure 6.11.: Quantum circuit imple-
menting UP (γ) for the Knapsack Problem.
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Since each two phase gates in the UP (γ) circuit act on different qubits, every phase
separation unitary may be applied in only one piece of time on a quantum computer
with suitable capabilities. Joining Fig. 6.11 and Fig. 6.10 immediately yields the
circuit for a single iteration UB(βj)UP (γj) with j ∈ {1, ..., p}. The full quasi-adiabatic
evolution - described by Eq. (2.2.10) - is then implemented via cascading all these single
iterations as shown in Fig. 6.12, and not forgetting about the initial state preparation
procedure to obtain |KP〉 from |0〉I |0〉W in the first place.

UP (γ1) UB(β1) UP (γp) UB(βp)

· · ·

· · ·

...

· · ·

· · ·

· · ·

...

· · ·

· · ·

...

· · ·

|0⟩I[1]

G

P (1)(−γ1 p1)

G† G

P (1)(−γp p1)

G† G

|β,γ⟩(p)I[1]

|0⟩I[2] P (1)(−γ1 p2) P (1)(−γp p2) |β,γ⟩(p)I[2]

|0⟩I[N−1] P (1)(−γ1 pN−1) P (1)(−γp pN−1) |β,γ⟩(p)I[N−1]

|0⟩I[N ] P (1)(−γ1 pN ) P (0)(−β1) P (1)(−γp pN ) P (0)(−βp) |β,γ⟩(p)I[N ]

|0⟩W [1] |β,γ⟩(p)W [1]

|0⟩W [⌊logWmax⌋+1] |β,γ⟩(p)W [⌊logWmax⌋+1]

(w1) (w1)

(wN ) (wN )

Figure 6.12.: Quantum circuit implementing the full quasi-adiabatic evolution of the Grover-
mixer QAOA for the Knapsack Problem with depth p and state preparation represented
by G as in Fig. 6.9. The red lines separate the different components of the quasi-adiabatic
evolution, particularly the initial state preparation and the p rounds of applying UB(β)UP (γ).

According to Fig. 6.12, the quasi-adiabatic evolution of the Grover-mixer QAOA for
the Knapsack Problem obeys a gate cost of at mostÅ

(blogWmaxc+ 1) +N(blogWmaxc+ 2)
(3

2blogWmaxc+ 7
2
)ã

+ p

Å
N + 2

(
(blogWmaxc+ 1) +N(blogWmaxc+ 2)(3

2blogWmaxc+ 7
2)
)

+ 1
ã

= (1 + 2p)
Å(
blogWmaxc+ 1

)
+N

(
blogWmaxc+ 2

)(3
2blogWmaxc+ 7

2
)ã

+ (N + 1)p,

i.e. it features a gate complexity of O(pN log(Wmax)2). Taking into account paralleliza-
tion again, the quasi-adiabatic evolution can be achieved in not more thanÅ

1 +N
(
(blogWmaxc+ 1)(blogWmaxc+ 4) + 1

)ã
+ p

Å
1 + 2

Å
1 +N

(
(blogWmaxc+ 1)(blogWmaxc+ 4) + 1

)ã
+ 1
ã

= (1 + 2p)
Å

1 +N
(
(blogWmaxc+ 1)(blogWmaxc+ 4) + 1

)ã
+ 2p,
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time steps; this complexity is still contained in O(pN log(Wmax)2). One can argue
that the overall gate complexity featuring our QAOA for the Knapsack Problem
should rather be concluded to be O(N log(Wmax)2), as the circuit depth p is not a
problem-specific quantity.

6.3. Classical Angle Optimization

Without any doubt, the design of the phase separation and mixing unitaries as well as
their realizations and implementations in terms of quantum circuits is - especially in the
framework of this thesis - by far the most intriguing part of the QAOA. However, I do
not want to sweep under the carpet the classical part in Algorithm 2 that is underlying
the iteration procedure, turning the QAOA itself into a hybrid quantum-classical
algorithm (cf. Section 2.2.2). More specifically, let us briefly take a look at the method
we use to optimize the 2p angles β = (β1, ..., βp) and γ = (γ1, ..., γp), since this can
indeed turn out as a bottleneck for the QAOA at the end of the day. Our QAOA shall
employ the so-called Nelder-Mead method, which is a standard numerical routine to
find the minimum of a function on a multidimensional domain, that was proposed
by Nelder and Mead [NM65]. In a nutshell, the Nelder-Mead method for dimension
n evolves a simplex consisting of n + 1 test points according to some sophisticated
rules in order to extrapolate the behavior of the objective function such that it is
contracted in all directions once a valley has been found. Since the Knapsack Problem
is a maximization problems (cf. Definition 1.14), we need to insert the expectation
value Ep defined via Eq. (2.2.12) with reversed sign, denoted by Ep, as input to the
Nelder-Mead method to make it applicable here. The full procedure of this commonly
used classical optimization routine can be found in Algorithm 12 in Appendix B. In
my code, the Nelder-Mead method is selected out of a list of various options in the
context of SciPy’s built-in function scipy.optimize.minimize [Vir+20]. As initial
conditions for the 2p angles, our QAOA uses random values from [0, 2π) in order to
avoid any bias influencing the optimization routine.
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Simulation

After lots of work being done, we arrived at the final part of the thesis - the simulation
of the algorithms we have put so much effort into. The testing and evaluation phase is
in fact not less important than the construction or the implementation: it establishes
comparability and enables to draw conclusions on the usability and potential of an
algorithm. The largest portion of an algorithm’s value only materializes in its results.

Chapter 3 was closed with the remark that there is - next to the full HQCBB - a
standalone inherent motivation and scientific interest in designing a hardconstraint
QAOA using the Quantum Tree Generation by Wilkening et al. [Wil+23]. Hence, we
will not only evaluate Algorithm 8 but also investigate the performance of the QAOA
implemented according to Chapter 6 on exemplary benchmark instances, underlining
again this work’s focus on the quantum physics. As the latter is embedded in the
former, this is what we are going to start with. Two main types of results can here be
examined in particular: the distribution of solution probabilities and the approximation
ratio. In terms of the HQCBB we will in detail analyze the competing lower bounds as
well as the number of explored nodes.

An important question for all of the upcoming simulations of course is how to achieve
the largest possible representativity of the used KP instances. In that aim, all of them
are generated randomly, based on a given number of items (the problem size), a desired
ratio between the capacity and the sum of all weights and a maximum value for profits
and weights. In Section 5.1 we learned that the total number of qubits required for
QTG is composed of N qubits for N items and blogWmaxc+ 1 qubits to keep track
the residual capacity in every step. Regarding the two parameters whose effect on
the qubit requirement may not be obvious, an increasing value in both the capacity
ratio and the maximum profit/weight leads to a larger capacity, which is equivalent to
more qubits being necessary. Wherever meaningful, we will furthermore generate a
whole bunch of equivalent random problem instances and average over them to allow
more profound statements. In what follows I refrain from printing the obtained values
for profits and weights as well as the capacity for the sake of readability - what will
however be shown are the parameters used to generate the respective KP instance.
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7.1. High-level Simulator

A major obstacle on our way to apply both our QTG-induced Grover-mixer QAOA
purely and the full HQCBB where it is integrated to exemplary benchmark instances
is that simulating the quantum circuit in Fig. 6.12 on a classical machine is computa-
tionally very expensive. This is however nothing that holds particularly for our QAOA,
it rather refers to the general inefficiency in simulating arbitrary quantum circuits on
classical computers. The simple reason for this is the number of complex amplitudes
needed to be stored that is growing exponentially with the amount of qubits [Fey82].1
Clearly, the available memory capacity of the used classical device naturally restricts
the number qubits that can be simulated. Note that although a certain amount of
qubits may be simulatable on your system, this does not necessarily mean that also
your quantum circuit can be executed in a reasonable amount of time - whether an
instance of the optimization problem in question is tractable depends, besides its qubit
requirement, on the number of gates making up the respective quantum circuit. Ac-
cording to the survey undertaken by Smelyanskiy, Sawaya, and Aspuru-Guzik [SSA16],
the best available supercomputers should by now be able to operate on 49 qubits.

Assuming such a hard limit, KP instances consisting of more than 49 items would
be intractable. Even worse, N + blogWmaxc + 1 ≤ 49 would need to be satisfied,
meaning that the upper bound of 49 items cannot be reached due to the capacity
register. However, Wilkening et al. [Wil+23] impressively showed that we do not need
to settle for that very restrictive limit. Inspired by them (and borrowing terminology),
I followed a completely different approach: After setting up a high-level simulator for
the QTG, I extended it by QAOA-based logic, making it also specifically tailored to
the alternating application of the mixing and phase separation unitaries derived in
Section 5.2. More specifically, as in [Wil+23], the QTG is simulated by generating
the tree of feasible solutions using the same heuristic as in Section 5.1, i.e. respecting
the branching rule given by Eq. (5.1.1), but doing that classically. This is, we apply a
breadth-first search (cf. Section 2.1.4) starting from the (feasible) solution 0 · · · 0 where
no item is selected, and store any found feasible solution together with its amplitude
and the value it encodes via the binary representation. While building the tree, the
amplitude of a stored feasible solution undergoes an update via being re-scaled by a
factor of 1/

√
2 whenever we find the solution with the next item being included to

be feasible as well, see Fig. 5.1. The essence of the QTG is to iteratively rule out all
infeasible solutions in the process of exploring the tree, which is why we do not need
to store the full 2N amplitudes for an instance consisting of N items. This classical
procedure returns an array of fN (yet) classical amplitudes with f < 2 and an array of

1Assuming a complex double precision where 8 bytes each encode the real part and the complex
part, simulating n qubits necessitates to store 2n+4 bytes for the 2n complex amplitudes [SSA16].
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fN binary values that enable to access the particular feasible solution via the index
in these arrays.2 So much for the simulation of the QTG. What is new compared to
[Wil+23] is to classically pretend the p-fold application of the concatenated mixing and
phase separation unitary for a QAOA circuit of depth p. Instead of blindly simulating
the item and the capacity register, recall the actions of UP and UB. As described in
Section 5.2 and elaborated on in Section 6.2, the phase separation unitary acts as
UP (γ) |x〉 = e−iγP |x〉 = e−iγP (x) |x〉 on a computational basis state |x〉. As indicated
above, the array of binary values identifying the feasible solutions that was returned
as part of our QTG simulation can now be used to create another array storing the
profit of each feasible solution at the same index. By linear extension, this means that
applying UP (γ) to the fN -dimensional state vector can be imitated by re-scaling each
entry with the according exponential factor corresponding to the respective feasible
solution. A bit more involved is to find an analytical expression for how the mixing
unitary acts on such a state vector. To figure that out, we will revisit the steps that led
to Eq. (2.2.22), expressing the general Grover mixing unitaries in terms of the employed
state preparation, which ultimately implied Eq. (5.2.1). Let |z〉 denote the state vector
of (meanwhile) complex amplitudes throughout the quasi-adiabatic evolution; then a
mixing unitary acts as

UB(β) |z〉 = e−iβ|KP〉〈KP| |z〉 =
Ç

∞∑
k=0

(−iβ)k

k! (|KP〉 〈KP|)k

å
|z〉

=
Ç
1 +

∞∑
k=1

(−iβ)k

k! |KP〉 〈KP|
å
|z〉 =

Å
1−

(
1− e−iβ

)
|KP〉 〈KP|

ã
|z〉

= |z〉 −
(
1− e−iβ

)
〈KP|z〉 |KP〉 .

Hence, when storing |KP〉 as the QTG result separately besides a continuously updated
fN -dimensional array holding the complex amplitudes of |z〉, we see that simulating the
application of UB reduces to calculating the expectation value 〈KP|z〉. This however
does not present us with major issues: Thanks to the feasibility-preserving property
of the Grover mixing unitaries (cf. Section 2.2.3) and due to UP being diagonal in
the computational basis (cf. Eq. (1.2.6)), we know that |z〉 can - at any stage of the
quasi-adiabatic evolution - be written as |z〉 = ∑

x∈feas(KP) zx |x〉, meaning that the
scalar product can just be evaluated via

〈KP|z〉 =
( ∑

y∈feas(KP)
ε∗

y 〈y|

)( ∑
x∈feas(KP)

zx |x〉

)
=

∑
x∈feas(KP)

ε∗
xzx |x〉

where εx denotes the amplitude that was collected by the feasible solution x ∈ feas(KP)
in the course of the QTG.

2Assumption (ii) in Section 1.3 guarantees that the factor f characterizing the number of feasible
solutions for a specific problem instance is indeed strictly smaller than 2, as otherwise any solution
would be feasible and the problem thus trivially solvable.

Page 89 of 141



Chapter 7. Simulation

To summarize that up, by storing four fN -dimensional arrays - one for the (real)
amplitudes of all feasible solutions after the QTG, one for their associated binary
values, another one for the corresponding profits and a last one for the continuously
updated (complex) amplitudes throughout the quasi-adiabatic evolution - we are able
to emulate the full QAOA circuit displayed in Fig. 6.12. It is remarkable that this
approach, compared to the usual execution based on simulated qubits, only needs
to carry out the QTG once whereas the usual execution based on simulated qubits
requires to apply it twice (one time inverted) in each lap as part of the Grover mixing
unitary (see e.g. Fig. 6.10).

The name ”high-level simulator” has a two-fold meaning: First and foremost, it reflects
the fact that the simulation does not need to actually execute the circuits obtained in
Sections 6.1 and 6.2 but is based on simple analytical formulae instead; on the other
hand, this approach allows, as we will see, to tackle problem instances that are way too
large for conventional simulation techniques. The success recipe for the performance
of the high-level simulator can be discovered by recapping the qubit requirement of
applying the QTG or, equivalently, the full QAOA on quantum device. Even though
the classical QTG procedure takes O(2N ) steps for a KP instance consisting of N items,
we can here save time thanks to not having to take into account the blogWmaxc+ 1
qubits in the capacity register. The operating dimension 2N+blog Wmaxc+1, corresponding
to the underlying Hilbert space, is, as discussed above, reduced to fN with f < 2.
Obviously, this provides an enormous speedup. Finally, I want to once more stress
that our high-level simulator is developed exclusively for the Knapsack Problem and
tailored explicitly to the designed Grover-mixer QAOA. Especially, we cannot expect
to be able to transfer that idea and set up such an approach for different (or even
arbitrary) circuits without further ado, as it badly depends on the structure of the
investigated combinatorial optimization problem and the unitaries to be simulated.

The actual code is written in Python 3.9, although this is of course not obliga-
tory. All simulations will be performed using an Intel Core i7 processor (2.0 GHz)
with 40 GB of RAM. All of my code - including the classical framework of the
HQCBB given by Algorithm 8, the above described high-level simulator for the
QTG and the quasi-adiabatic evolution, the classical evaluation and optimization
part of the QAOA as well as the different simulations together with the KP in-
stances generated randomly for them and the obtained results - has been made pub-
licly available at https://github.com/PaulChr99/MasterThesis_Hybrid-Quantum-
Classical-Branch-and-Bound/tree/main.
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7.2. Grover-Mixer QTG QAOA

In order to keep the significance of results growing with the reading flow, let us begin
with taking a look at solution probabilities before evolving to approximation ratios.

7.2.1. Solution Probabilities

Recall that executing the Grover-mixer QAOA configured with QTG as state prepa-
ration according to Fig. 6.12 with depth p results in a final angle state of the form
Eq. (2.2.10). To obtain the corresponding QAOA result this state would need to be
evaluated a last time as in Eq. (2.2.12). However, here we are not interested in the
optimal solution value found by the QAOA but instead in how the probabilities are
distributed among the different solutions. Thanks to the chosen mixer, only feasible
solutions can have a non-vanishing amplitude (a probability larger than zero) in the
final angle state - the essence of our Quantum Alternating Operator Ansatz was to
ensure the preservation of feasibility during the full QAOA run. On a quantum com-
puter, a repeated measurement would provide the possibility to retrieve information
about the probability distribution encoded in the final state.

As the number of feasible solutions in general increases with the problem size, the
KP instances generated for this first simulation part cannot be large (more feasible
solutions imply more candidates with significant probability, making a visualization
only hardly possible). As mentioned above, by increasing the capacity Wmax we can
however shift even small problem instances to the interesting regime in terms of qubits
where simulations of quantum circuits are not trivial.

Since different problems generally feature different optimal solutions, the type of
visualization chosen here is incompatible with considering multiple equivalent instances
(meaning the same generation parameters). This is, there is only one random problem
for each set of parameters. To investigate the behavior for different qubit requirements,
each of the three chosen problem sizes is itself equipped with the same four values
limiting profits and weights. The corresponding qubit numbers are then individually
evaluated for each generated Knapsack Problem instance. That being said, the first
complete set of parameters can be found in Table 7.1.

A quantity that is also well-suited varying and monitoring is the depth p of the QAOA,
determining how many loops of applying the phase separation and the mixing unitaries
are been taken. Its influence can be roughly studied in the first simulation results that
correspond to Table 7.1.
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Number of items Capacity ratio Maximum profit/weight Qubit requirement
3 0.75 104 17
3 0.75 106 24
3 0.75 1010 37
3 0.75 1018 64

Table 7.1.: Parameters for random KP instances with 3 items and qubit requirements.
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Figure 7.1.: Average distributions of solution probabilities for random KP instances of size
3 with a capacity ratio of 0.75 that are generated using the parameters in Table 7.1. For each
instance and each depth p ∈ {1, 3, 5, 10}, the QAOA is executed 10 times. The error bars
depict the resulting standard deviations. The optimal solutions of the problem instances are
written in red.
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It can be considered a first validation of our Grover-mixer QAOA that the quasi-
adiabatic evolution develops towards the optimal solution for any of the four problems
of size 3. Moreover, we can beautifully see in Figs. 7.1a to 7.1d how the probabilities
of the optimal solutions increase and approach the value 1 with growing depth. Both
the slopes and the standard deviations generally seem to shrink the larger the depth
gets with the standard deviation being negligible for p = 10, indicating that there is
not much improvement to be expected for even higher depth values.

The next size is only marginally larger than the one before, making it possible to
analyze the severity of changes that can be caused by a slight variation of the size:

Number of items Capacity ratio Maximum profit/weight Qubit requirement
5 0.5 104 19
5 0.5 106 26
5 0.5 1010 39
5 0.5 1018 66

Table 7.2.: Parameters for random KP instances with 5 items and qubit reuqirements.

Performing completely the same simulation that led to Fig. 7.1 for the problem instances
based on Table 7.2 yields:
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(b) Maximum profit/weight value of 106 and
corresponding qubit requirement of 26.

Figure 7.2.: Average distributions of solution probabilities for random KP instances of size
5 with a capacity ratio of 0.5 that are generated using the parameters in Table 7.2. For each
instance and each depth p ∈ {1, 3, 5, 10}, the QAOA is executed 10 times. The error bars
depict the resulting standard deviations. The optimal solutions of the problem instances are
written in red.
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corresponding qubit requirement of 39.
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(d) Maximum profit/weight value of 106 and
corresponding qubit requirement of 64.

Figure 7.2.: Average distributions of solution probabilities for random KP instances of size
5 with a capacity ratio of 0.5 that are generated using the parameters in Table 7.2. For each
instance and each depth p ∈ {1, 3, 5, 10}, the QAOA is executed 10 times. The error bars
depict the resulting standard deviations. The optimal solutions of the problem instances are
written in red.

And indeed, the difference between Figs. 7.1 and 7.2 is drastic. Each of the four
generated instances of size 5 requires exactly two qubits more than its size-3 counterpart.
It is good to see that the number of feasible solutions with non-vanishing probability
has approximately quadrupled, in line with the exponential growth in dimension thanks
to the increased qubit numbers. But what catches the eye most are the error bars -
compared to those in Fig. 7.1 the standard deviations are fairly large relative to the
corresponding average probability values; this holds for all Figs. 7.2a to 7.2d. This
behavior can most probably be explained by the increased number of feasible solutions
among which the probabilities are distributed while the number of QAOA executions
has not grown accordingly. For the two smaller problems in terms of qubits (Figs. 7.2a
and 7.2b) the respective optimal solution was nevertheless found with the largest
probability, which is in turn again higher the larger the depth was chosen. For the two
more qubit-expensive instances: While the optimal solution in Fig. 7.2c has a slight
overweight compared to two other competing solutions, the QAOA ends up with two
solutions of almost equal probabilities in Fig. 7.2d. Keep in mind that this analysis is
based on average values with which large standard deviations are associated.

Let us now increase the number of items again by this amount of two in order to see
whether that confirms our just made observations. The corresponding parameters are
listed in Table 7.3.

Comparing the rightmost columns of Tables 7.2 and 7.3 we see that the size being
again enlarged by two leads to a qubit requirement increased by one in the first two
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Number of items Capacity ratio Maximum profit/weight Qubit requirement
7 0.25 104 20
7 0.25 106 27
7 0.25 1010 41
7 0.25 1018 67

Table 7.3.: Parameters for random KP instances with 7 items and qubit requirements.

cases and by two in the second two instances. This is what the results look like:
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(b) Maximum profit/weight value of 106 and
corresponding qubit requirement of 27.
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(c) Maximum profit/weight value of 1010 and
corresponding qubit requirement of 41.
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Figure 7.3.: Average distributions of solution probabilities for random KP instances of size
7 with a capacity ratio of 0.25 that are generated using the parameters in Table 7.3. For each
instance and each depth p ∈ {1, 3, 5, 10} the QAOA is executed 10 times. The error bars
depict the resulting standard deviations. The optimal solutions of the problem instances are
written in red.
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The reader may wonder now why number of solutions with non-negligible probabilities
in none of Figs. 7.3a to 7.3d has increased by a factor of two or four compared to its
respective counterpart in Fig. 7.2. Normally, this is what we would expect. However,
the ratio that determines how large the capacity can be relative to the sum of all
weights has been halved in the transition from Table 7.2 to Table 7.3 just in order to
prevent too large amount of feasible solutions to be printed. Reducing the capacity
ratio has also been done in the first step of increasing the size (compare Tables 7.1
and 7.2) but it was there cut by only a third.

Apart from that, Figs. 7.3a and 7.3b structurally resemble all of the results in Fig. 7.2
- large error bars and an ambiguous balance in two alleged best solutions in each case.
Even further, only at the highest depth 10 the respective optimal solution ends up
with the top probability. The largest two KP instances in this simulation part show, in
contrast, a different behavior. Their results in Figs. 7.3c and 7.3d look more like what
we found for size 3 in Fig. 7.1: The optimal solutions are clearly hit with probabilities
between 50% and 70% for any depth and standard deviations are back in reasonable
orders of magnitude. This also shows that an enlarged set of feasible solutions does
not always imply a rise in error bars.

All together, simulating the distributions of solution probabilities for different sizes,
different qubit amounts and different depths gave us a good first impression of how to
assess the outcome of our Grover-mixer QAOA for the Knapsack Problem. The results
in Figs. 7.1 to 7.3 indicate the success of our approach. However, the chosen way of
displaying the results is only feasible for very small problem instances where the number
of feasible solutions with non-vanishing probability is low enough to resolve all of them
for the different depths in one graphic. It is moreover not suited for quantitatively
comparing the results obtained for different triples of parameters. Obviously, the sizes
analyzed here do not justify to draw general conclusions about the performance of
the QAOA, even though the qubit amount has been artificially up-scaled to make the
problems worth investigating.

7.2.2. Approximation Ratios

Probably the most common quantity to analyze when constructing a QAOA is the
so-called approximation ratio. Given a problem instance, the approximation ratio is
defined as the share of the QAOA result by the optimal solution value. By construction,
a QAOA provides a lower bound to the optimal solution value of a maximization
problem (cf. Section 2.2.2), meaning the approximation ratio takes values between 0
and 1. Compared to the approach in Section 7.2.1, investigating the approximation
ratio seems to be less informative, as it does not tell anything about the probability

Page 96 of 141



Chapter 7. Simulation

distribution but only evaluates the expectation value of the final angle state according
to Eq. (2.2.12), in which the single probabilities are aggregated. So why would we
want to take this road? First and foremost, the format of bar charts in Figs. 7.1
to 7.3 makes it difficult to compare different problem sizes (in terms of items or
qubits) and to quantitatively the dependency on the depth. But most importantly, the
approximation ratio represents the relative version of the quantity that is actually used
for the lower bound comparison in Algorithm 8 or, more precisely, in Algorithm 10.
Also, even though the approximation does not directly contain any information about
the probabilities of individual solutions, its height of its value tells us something about
how close we are to the optimal solution, since that by definition corresponds to the
maximum objective function value (while feasibility is preserved). Corollary 2.3 states
that the solution found by the QAOA approaches the optimal solution value in the
limit p→∞. From this we derive the expected behavior of the approximation ratio
to increase with growing depth. Our expectation shall be verified for different qubit
sizes, for which two parameters in the generation of KP instances will be varied: the
maximum value of profits and weights for a fixed combination of size and capacity
ratio and then the number of items with the other two being fixed.

Varying Maximum Profit/Weight Value

Starting with the maximum value for profits and weights, we will iterate it over a
set of five numbers for four different problem sizes in order to not lose generality by
restricting to only one number of items. The values by which profits and weights are
to be limited are again chosen deliberately high, as in Section 7.2.1 to up-scale the
qubit requirements, making the simulation even more attractive. The parameters used
for the generation of problem instances are as follows:

Number of items Capacity ratio Maximum profit/weight Qubit requirement

5 0.25
{

103, 104, 106, 1010, 1018} {15, 18, 24, 38, 65}

20 0.07
{

103, 104, 106, 1010, 1018} {30, 34, 40, 53, 80}

40 0.033
{

103, 104, 106, 1010, 1018} {50, 53, 60, 73, 100}

60 0.026
{

103, 104, 106, 1010, 1018} {70, 73, 80, 93, 120}

Table 7.4.: Parameters for random KP instances with varying maximum profit/weight value
and corresponding qubit requirements.

As the focus is here on comparing the approximation ratio behavior for problem sizes
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induced by different maximum profit/weight values, the simulation results are separated
by the number of items, yielding four graphics:
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(a) Simulation results for a size of 5 and
a capacity ratio of 0.25.
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(b) Simulation results for a size of 20 and
a capacity ratio of 0.07.
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(c) Simulation results for a size of 40 and
a capacity ratio of 0.033.
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(d) Simulation results for a size of 60 and
a capacity ratio of 0.026.

Figure 7.4.: Average approximation ratios for random KP instances generated using the
parameters in Table 7.4. For each parameter combination the simulation is performed for five
problem instances with the same specification, where it is ensured that all of them are of the
same qubit size. For each of generated instance, the QAOA is executed five times. The error
bars depict the averages of the resulting standard deviations for the equivalent KP instances.

The first good news is that the tendency of the approximation ratio to grow when the
depth is increased can be recognized in all of Figs. 7.4a to 7.4d - confirming our above
formulated expectation. While this is apparently definitely true for the data series
corresponding to the four smaller problem instances in terms of qubits at each number
of items, the data points associated with the largest maximum profit/weight values
seem to not share this behavior - they experience a brief rise before dropping slightly
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again or stagnating in every case. However, we must not forget the schema according
to which the maximum values for profits and weights were chosen in Table 7.4: The
exponent is doubled in every step and the qubit requirement shares this doubling
procedure to a good approximation, which can be traced back to its logarithmic scaling
with the capacity. Hence, while the three smallest instances have a somewhat close
qubit need at each number of items, especially the last steps lead to big gaps in qubit
size. A possible explanation for the non-conform course of the data series corresponding
to those qubit-largest problems could therefore be that the chosen depths are simply
too low to find the expected behavior for these strongly more expensive instances.

Also conspicuous is that, except for a maximum profit/weight value of 1018, the data
points for the different problem instances are confined to a small band in Figs. 7.4a
and 7.4c whereas the whole data series are shifted horizontally and intersect each other
only rarely in Figs. 7.4b and 7.4d. Beyond, the order in which the data series appear
(started from top or bottom) is equal comparing the latter two graphics. It may indeed
be not predictable which of these two options will actually apply when varying the
maximum value for profits and weights for a given number of items - recall that the
capacity ratio is kept unchanged in each of Figs. 7.4a to 7.4d.

A conclusion that can indubitably be drawn from Fig. 7.4 is that the quality of the
approximations calculated by our QAOA is solid, as the results find themselves even
for the most shallow depths to not be worse than 75%. Considering the actual values of
the obtained approximation ratios, an average decrease can be identified for numbers
of items getting larger. However, this is something for which an in detail analysis of
different sizes is better suited.

Varying Number of Items

Vice versa, the number of items is now varied for four values limiting profits and
weights of different magnitudes. In contrast to the procedure above, the size is not
iterated over the same set of values - instead, the intervals out of which the numbers
of items are chosen are shifted to larger regions. More specifically, we set up four sets
in each of which four sizes are picked from a range of length 10. However, the capacity
ratios for the four sections shall be assigned as in Table 7.4. The maximum value for
profits and weights in turn is supposed to accompany the four regimes with a uniformly
growing exponent. An overview of the parameter combinations is given by Table 7.5.

Except from the tiny regime (first row in Table 7.5) where three, four or five ancilla
qubits are needed to store the capacity, the discrepancy between qubit requirement and
number of items is always constant per regime for the chosen pairs of capacity ratio
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Number of items Capacity ratio Maximum profit/weight Qubit requirement

{5, 7, 10, 15} 0.25 10 {8, 11, 14, 20}

{20, 23, 26, 30} 0.07 106 {40, 43, 46, 50}

{35, 38, 40, 45} 0.038 1012 {75, 78, 80, 85}

{50, 54, 57, 60} 0.027 1018 {110, 114, 117, 120}

Table 7.5.: Parameters for random KP instances with varying number of items and corre-
sponding qubit requirements.

and maximum profit/weight value. Even further, this difference increases by exactly
20 in the transition between the larger three regimes.

Generating analogously structured simulation results as in Fig. 7.4 with the roles of
maximum profit/weight value and size being flipped yields:
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(a) Simulation results for the tiny size regime
with a capacity ratio of 0.25 and a maximum
profit/weight value of 10.
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(b) Simulation results for the small size regime
with a capacity ratio of 0.07 and a maximum
profit/weight value of 106.

Figure 7.5.: Average approximation ratios for random KP instances generated using the
parameters in Table 7.5. For each parameter combination the simulation is performed for five
problem instances with the same specification, where it is ensured that all of them are of the
same qubit size. For each generated instance, the QAOA is executed five times. The error
bars depict the averages of the resulting standard deviations for the equivalent KP instances.

Considered over the full depth interval, the three smallest regimes in Figs. 7.5a to 7.5c
meet our expectation of an approximation ratio that increases as the depth is enlarged.
Our smallest set of instances consisting of N = 5 items shows in full beauty how
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(c) Simulation results for the medium size regime
with a capacity ratio of 0.038 and a maximum
profit/weight value of 1012.
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(d) Simulation results for the large size regime
with a capacity ratio of 0.027 and a maximum
profit/weight value of 1018.

Figure 7.5.: Average approximation ratios for random KP instances generated using the
parameters in Table 7.5. For each parameter combination the simulation is performed for five
problem instances with the same specification, where it is ensured that all of them are of the
same qubit size. For each generated instance, the QAOA is executed five times. The error
bars depict the averages of the resulting standard deviations for the equivalent KP instances.

the QAOA result can approximate the optimal solution value for a growing depth,
including continuously shrinking standard deviations. The here found monotonicity
cannot be discovered to the same ideal extent in the other data series. While the
three other curves in Fig. 7.5a manage to overall overcome an absolute amount of
approximately 15 percentage points, the KP instances in the small size regime expose a
behavior that can be best described as something between slight growth and stagnation.
The largest set of problems does not even reach the 70% in terms of approximation.
The effect of the size is most impressively visible in Fig. 7.5b: The larger the problem
instance in terms of variables or qubits the more complicated it obviously gets for
the QAOA to evolve to the optimal solution at a constant depth due to the generally
enlarged number of feasible solutions - having visible negative consequences for the
approximation ratio even for slightly varied sizes. While the order is the same in
Fig. 7.5a for the tiny size regime, there is not even a single intersection in Fig. 7.5b.
Both is different for the larger two regimes: In Fig. 7.5c another than the smallest
set of instances is achieving the best results for the first time; pretty untypically, the
problems with N = 35 actually show the worst performance here. In the medium size
regime it looks as if the approximation ratios would not approach 1 but a different value
smaller than 0.86; this observation has not been made collectively in any of the other
approximation ratio simulations in Figs. 7.4 and 7.5. Turning to the large size regime,
we can recognize a similar behavior in Fig. 7.5d compared to the qubit-expensive
problem sets in Fig. 7.4: For none of the sizes we find the average approximation ratio
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at the largest depth of 10 to occupy a global maximum among its corresponding data
series. The explanation given there could also apply here: It would simply be necessary
to extend the depth range of the simulation by larger in order to observe the expected
behavior of an approximation ratio that increases with growing depth. As we can
see from Table 7.5, the qubit requirements for all of the four KP instance sets in the
large regime are pretty high, meaning that the application of the QAOA becomes very
expensive.

Nevertheless, the simulation results for varying the number of items underpin the
conviction gained from varying the maximum value for profits and weights in Fig. 7.4
that our QAOA produces reliable results. We found only one set of KP instances in
Fig. 7.5 whose approximations stay below 70% relative to the optimal solution value for
all depths, namely those with N = 30 items in the medium size regime. Furthermore,
our QAOA managed to evolve to the optimal solution with a probability bordering
certainty of about and over 90% for smaller KP instances requiring 5, 11-14 and even
40 qubits. On the other hand, the maximum approximation ratios achieved in each of
the regimes in turn support the hypothesis that the approximation provided by the
QAOA can in general be expected to anti-correlate with the size of the problem in
terms of items/qubits.

7.3. Full HQCBB

Now where we have sufficiently investigated the performance of the pure Grover-mixer
QAOA, we can turn to evaluating the full HQCBB. Before analyzing global properties,
let us first restrict to the single component of the algorithm that is affected by the
quantum extension, namely the lower bounds.

7.3.1. Lower Bound Comparisons

Clearly, introducing an alternative quantum lower bound to the classical Branch and
Bound happened in the hope and the good belief that it can turn out as an actual
competition for its classical counterpart. That is, a HQCBB in which the QAOA
outcomes are not even close to respective the Greedy lower bounds is essentially nothing
else than a normal B&B. Fortunately, the simulation results Section 7.2 - especially
the approximation ratios in Section 7.2.2 - give us cause for optimism.

Throughout the algorithm run, the size of the residual subproblem to compute (lower)
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bounds for vary in terms of items and qubits, as different nodes correspond to different
items being specified, inducing an according reduction in capacity (cf. Chapter 4). The
idea now is to examine how the QAOA output compares to the Greedy lower bound
for different sizes of subproblems that are associated with non-prunable nodes in the
search tree. Thus, we will run the HQCBB and collect data about the obtained lower
bound values in combination with the residual size whenever a lower bound is to be
calculated. Afterwards we can average over the implied ratios of QAOA by Greedy
for each residual size. In order to make that comparable for different KP instances,
the size of a subproblem is going to be stored in relation to the input problem in
question; for this, the qubit requirement will be consulted as measure.3 As the number
of required qubits is used as identifier here, the problems to be simulated shall, unlike
in Section 7.2, not be determined by the number of items, a capacity ratio and a
maximum value for profits and weights. Instead, the qubit amount will this time be the
second fixed parameter alongside the number of items, based on which the other two
are chosen to meet the specifications. As you will see, the chosen combinations in fact
allow to only vary the limiting values for profits and weights and even keep the capacity
ratios constant. Moreover, each number of items that was used in Section 7.2.2 when
varying the maximum profit/weight value (cf. Table 7.4) is going to be revived here,
sufficing for two sets of parameters. For the smallest sizes, this looks like:

Number of items Qubit requirement Capacity ratio Maximum profit/weight

5 10 0.75 10

5 20 0.75 104

Table 7.6.: Parameters for random KP instances of size 5.

In order to properly face the slight probabilistic behavior that enters our HQCBB
in Algorithm 8 via the node selection (cf. Algorithm 6) as part of the searching
strategy, the algorithm shall be run four times on each generated instance. Compared
to Section 7.2, the number of equivalent KP instances considered per parameter
combination is up-scaled to 10. What shall - as always - furthermore be done is to
analyze the influence the depth of the QAOA circuit has, which is here ranging over
{1, 3, 5, 7, 10}. The results produced by the simulation for the small instances created
based on Table 7.6 are displayed in Fig. 7.6.

As we are dividing the QAOA result by the respective Greedy outcome, data points

3In this setting there is no single correct direction of arranging the relative residual sizes on the
horizontal axis. This is due to the employed depth-first search (DFS) employed in Algorithm 8,
inheriting the tendency of shrinking the size of an explored subproblem to zero before continuing
with more open items again to the HQCBB.
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(a) Simulation results for 10 qubits, accompanied
by a maximum profit/weight value of 10.
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(b) Simulation results for 20 qubits, accompanied
by a maximum profit/weight value of 104.

Figure 7.6.: Average ratios of QAOA by Greedy lower bound for random KP instances
consisting of 5 items and featuring a capacity ratio of 0.75, generated using the parameters
in Table 7.6. For each parameter combination the simulation is performed for 10 problem
instances with the same specifications. For each generated instance, the HQCBB is run
four times. The error bars depict the average of the resulting standard deviations for the
equivalent KP instances.

with values larger than 1 correspond to the cases we are looking for - those where the
QAOA managed to outperform the Greedy bound in the sense of Algorithm 4.

A first thing that catches the eye when considering Fig. 7.6 is that there seem to be some
data points featuring a QAOA-Greedy ratio of exactly 1 and no error bars, meaning
that quantum and classical lower bounds do completely match (even on average). How
can that be, given that our QAOA implementation starts every run with a new set of
random initial angles? The reason can be found in the input types of Algorithms 2
and 4: Since both our QAOA as well as the Greedy lower bound operate on a KP
instance, the actual bound for a node in the search tree is not obtained by simply
running either of these algorithms solely; instead, the outcome has to be added to the
offset which is determined by the already specified items, together making a valid lower
bound for the associated region of the search space, as shown in Algorithm 10 and
described in Section 4.2. Now there is an edge case in the generation of a subproblem
as a KP instance based on the bitstring corresponding to the current node: Right after
the definition of the Knapsack Problem in Definition 1.14 in Section 1.3 we introduced
three assumptions on the structure of the profits, weights and the capacity forming
a valid KP instance - especially that there is no item with a weight larger than the
capacity, as these items can otherwise not be contained in a feasible solution anyway.
As already emphasized in Section 4.4, when creating a subproblem from a bitstring
in our application, it is ensured that this assumption still holds for the subproblem
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again. Since the subproblem generation reduces the capacity while simultaneously not
altering single weights, the probability of a yet unspecified item whose weight exceeds
the residual capacity drastically increases. In the extreme case, none of the remaining
items is still affordable. When this happens, the resulting residual subproblem is empty,
in which case both the Greedy lower bound and our QAOA naturally return a value of
zero. As a consequence, both are just given by the calculated offset, which is why they
turn out to fully agree.

Now where this question has been answered, we find four and two data points with
a ratio greater than 1 in Figs. 7.6a and 7.6b, respectively, corresponding to the four
and two largest depths and the same relative residual sizes of 80% and 95%. That
represents an early confirmation for our QAOA being indeed capable of achieving
better results compared to the Greedy lower bound; whether this persists for larger
instances remains to be seen. In Fig. 7.6, the data series associated with p = 1 are
the only ones that could never improve the classical lower bound. However, this is
not surprising for such a small depth. It is even more impressive that a first slight
improvement can already be found at p = 3 for KP instances small as consisting of
only N = 5 items.

Apart from that, all curves for the same qubit sizes in Figs. 7.6a and 7.6b show pretty
similar courses, especially if the lowest depth p = 1 is taken out of this consideration.
Both figures also suggest that the QAOA results get better with growing depth -
there is not even a single deviation from the expected vertical order of data points.
On the other hand, the difference to the Greedy bound seems to be largest when
running the bounding algorithms on the original problem instance. Due to the peaks
in Figs. 7.6a and 7.6b, it is not possible to ascertain a falling tendency with larger
becoming subproblems. Let us move on to the next sizes to investigate that further.

For the next sets of parameters we quadruple the number of items but want the qubit
requirement to increase only by 10 first before making a larger step and adding 20.
That is achieved by the following choices:

Number of items Qubit requirement Capacity ratio Maximum profit/weight

20 30 0.1 103

20 50 0.1 109

Table 7.7.: Parameters for random KP instances of size 20.

Running the same simulation that led to Fig. 7.6 yields the results shown in Fig. 7.7
for the accordingly generated KP instances.
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(a) Simulation results for 30 qubits, accompanied
by a maximum profit/weight value of 103.
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(b) Simulation results for 50 qubits, accompanied
by a maximum profit/weight value of 109.

Figure 7.7.: Average ratios of QAOA by Greedy lower bound for random KP instances
consisting of 20 items and featuring a capacity ratio of 0.1, generated using the parameters
in Table 7.7. For each parameter combination the simulation is performed for 10 problem
instances with the same specifications. For each generated instance, the HQCBB is run
four times. The error bars depict the average of the resulting standard deviations for the
equivalent KP instances.

Many things that could be observed for the instances of size 5 can also be recognized in
the next larger regime. Maybe the most striking is the large degree to which the data
series for the different depths do overlap. The course taken by the curve associated
with p = 1 can be best identified individually; the corresponding values seem to be
lower than the others - sometimes more, sometimes less. Especially in the peaks the
other four data series match very well. Fig. 7.7a shows two larger peaks with top
values slightly below 1.3 and 1.1 at about 57.5% and 77.5% qubit size, respectively. In
Fig. 7.7b, in contrast, we can identify just one major peak at about 65% of the original
qubit requirement with a maximum value above 1.2 as well as two similarly shaped
smaller ones next to each other at larger relative residual qubit sizes. These peaks
are proof that our QAOA was again able to beat the Greedy lower bound at certain,
suggesting that the first small successes found for instances with 5 items in Fig. 7.6
were no coincidence. However, one has to admit that the QAOA returns better lower
bounds only in selected situations - the Greedy value still represents the maximum
in the majority of cases. Concerning the peaks, we observe more of rising and falling
sections in Fig. 7.7 than in Fig. 7.6. Despite the larger peaks, Fig. 7.7a in particular
justifies us to speak of a visible tendency of a decreasing QAOA output quality when
the subproblem to which it is applied gets larger. This behavior can however only be
weakly identified in Fig. 7.7b.

What has not been mentioned so far is the number of printed data points, which
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directly translates to the number of differently sized subproblems for which our HQCBB
calculated lower bounds during the simulation run. In fact, it is very unlikely for problem
instances with the same number of items to induce a subproblem of a yet untouched
size when running the HQCBB multiple times (which is done in our simulation to
wipe out the slight probabilistic behavior in the node selection and, of course, due
to different circuit depths being evaluated). This is why the data series normally all
have values at the same relative residual qubit sizes. This is true both for Figs. 7.6
and 7.7, only the absolute number of data points has increased in the transition from
5 items to 20. To a good approximation, this number has quadrupled - just like the
number of items, which is as expected since a four-times larger problem should in
general induce an amount of (non-rejectable) subproblems with different sizes that is
four-times higher.

The last thing I want to address before continuing with the next sizes is the error
bars. In Figs. 7.6a and 7.6b the data points with value 1 are really the only ones that
come with significant standard deviations. In contrast, large error bars can only be
found in the left halves of Figs. 7.7a and 7.7b, but also not for every depth: The data
points corresponding to p = 1 again form the outsider for being largely erroneous at
small subproblems. However, we do not have analyzed enough data to draw any solid
conclusions from these observations yet, so let us move on.

For the next parameter sets the factor by which the number of items is increased is
not as large as in the last step, we are now doubling it:

Number of items Qubit requirement Capacity ratio Maximum profit/weight

40 70 0.04 109

40 86 0.04 1014

Table 7.8.: Parameters for random KP instances of size 40.

The analog simultation results for the random KP instances generated from these
parameter specifications can be found in Fig. 7.8.

Almost every of the impressions we got from analyzing Figs. 7.6 and 7.7 can also be
made when considering Fig. 7.8: the concordance between the data series for different
depths with the data points corresponding to p = 1 deviating a bit downwards, an
again increased number of peaks and data points and even comparably large error
bars at the smaller subproblems, especially for the lowest depth. Only the tendency
of poorer QAOA quality for growing subproblem qubit requirements can neither in
Fig. 7.8a nor in Fig. 7.8b be recognized particularly well - not least because of the
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(a) Simulation results for 70 qubits, accompanied
by a maximum profit/weight value of 109.
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(b) Simulation results for 86 qubits, accompanied
by a maximum profit/weight value of 1014.

Figure 7.8.: Average ratios of QAOA by Greedy lower bound for random KP instances
consisting of 40 items and featuring a capacity ratio of 0.04, generated using the parameters
in Table 7.8. For each parameter combination the simulation is performed for 10 problem
instances with the same specifications. For each generated instance, the HQCBB is run
four times. The error bars depict the average of the resulting standard deviations for the
equivalent KP instances.

QAOA results obtained for the original problem sizes not forming the worst comparison
values in either case this time.

What must definitely be highlighted here is the exceptionally good QAOA performance
in Fig. 7.8a slightly below 50% of the original qubit size: The returned quantum
lower bound exceeds its classical Greedy counterpart by almost 60%, thereby clearly
representing the best result seen so far. Even the most shallow circuit depth p = 1
was sufficient in this case to reach a value of 1.4 or above. However, this success could
apparently not be built on when increasing the maximum profit/weight value from
109 to 1014 - the top values achieved at two relative residual sizes in the right half of
Fig. 7.8b, in contrast, are vertically located at a ratio of 1.1. In terms of the maximum
values, The KP instances with the largest qubit cost thereby perform worse than those
generated from Table 7.7 and approximately equal to those created from Table 7.6.

On the contrary, one thing is new in Fig. 7.8 compared to Figs. 7.6 and 7.7, namely that
a significantly large portion of data points features a QAOA-Greedy ratio exceeding
the threshold value of 1. In particular, for subproblems up to 80% of the original qubit
requirement, Fig. 7.8a shows more than half the data points above the critical value
(part of the full truth however also is that no improvement of the Greedy lower bound
could be achieved for larger subproblems). This is not so pronounced in Fig. 7.8b,
although there also sections in which the resulting ratio continuously stays above 1,
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especially for the larger depths. Such observations are not valid for the smaller two
regimes considered so far: For the generated KP instances consisting of 20 items,
the cases of a better quantum bound are limited to the peaks in Figs. 7.7a and 7.8a,
respectively, whereas an improvement on Greedy could only be made for the 5-items
instances using a larger underlying depth at one certain subproblem qubit size each in
Figs. 7.6a and 7.6b. Next to the maximum ratios achieved for a set of parameters, this
growth in the share of data points for which the quantum lower bound outperformed
its classical analogue can be considered confirmation for our idea of challenging the
Greedy heuristic with our Grover-mixer QTG-induced QAOA likewise.

Let us figure out what of these two success measures can be found to hold at the fourth
and largest regime to be analyzed here. The number of items is again increased by 20,
corresponding to a minimum growth rate of 50% in this last step. Lastly we want to
generate problem instances with the expressive and immense qubit costs of 100 and
120, respectively, for which the following parameter configurations are sufficient:

Number of items Qubit requirement Capacity ratio Maximum profit/weight

60 100 0.025 1012

60 120 0.025 1018

Table 7.9.: Parameters for random KP instances of size 60.

As we can see from Table 7.9, the high qubit requirements in this largest regime are
mainly driven by the maximum profit/weight value next to the number of items. Since
the capacity ratio has continuously decreased from Table 7.6 to Table 7.9, the upper
limit for profits and weights naturally had to be up-scaled in order to reach the desired
amounts of qubits. Our last simulation to investigate the relation between the two
alternative lower bounds gave the results shown in Fig. 7.9.

A first thing catching the eye is the strongly increased density of data points in Fig. 7.9a.
In some regions - especially when the QAOA-Greedy ratio is stagnating between 40%
and 50% as well as between 70% and 80% of the original size in terms of qubits - they
are compressed to a large degree whereas rising and falling sections manage to stretch
them apart. On the other hand, the expected growth in the absolute number of data
points due to more items failed to happen for our largest set of instances: This quantity
seems rather unchanged in Fig. 7.9b compared to the 40-items regime in Fig. 7.8.
Aggregated over all regimes, we notice that the amount of subproblems for which lower
bounds shall be evaluated has - despite the partly strong visible growth, especially
in the transition from Fig. 7.6 to Fig. 7.7 - not increased to the expected extent. Of
course, randomly generated problem instances can and will by chance have more or less
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(a) Simulation results for 100 qubits, accompa-
nied by a maximum profit/weight value of 1012.
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(b) Simulation results for 120 qubits, accompa-
nied by a maximum profit/weight value of 1018.

Figure 7.9.: Average ratios of QAOA by Greedy lower bound for random KP instances
consisting of 60 items and featuring a capacity ratio of 0.025, generated using the parameters
in Table 7.9. For each parameter combination the simulation is performed for 10 problem
instances with the same specifications. For each generated instance, the HQCBB is run
four times. The error bars depict the average of the resulting standard deviations for the
equivalent KP instances.

suited structures within the items, leading to more or less nodes that can be pruned off
the search tree before coming to the lower bound calculation. Nevertheless, this can
be best explained with the capacity ratio shrinking from regime to regime, generally
implying a smaller relative number of feasible subproblems.

The usual findings - like a quite common course of curves for different depths with
the data series for p = 1 deviating from that especially for smaller relative residual
qubit sizes of subproblems and small standard deviations except for exactly these cases
- can also be observed in Figs. 7.9a and 7.9b. With pretty much certainty we can state
that these things seem to hold in general, irrespective of the chosen number of items,
the specific capacity ratio and the particular limiting value for profits and weights.
In Section 7.2.2 we found clear evidence for the correlation between a better QAOA
output quality (there measured by the approximation ratio) and a larger circuit depth.
Slight differences can also be recognized in Figs. 7.6 to 7.9, especially between p = 1
and the rest and probably best visible in Fig. 7.6b. The data series corresponding to
largest depth of p = 10 also form an upper border for the others most of the time,
particularly in Figs. 7.7a, 7.7b and 7.8a, while we have also seen exceptions to this
rule, e.g. for the larger subproblems in Fig. 7.9b. Nevertheless, we have to conclude
that further increases in the circuit depth after replacing p = 1 by p = 3 could not be
found to achieve a significant improvement in how the QAOA performs in terms of
bounding subproblems compared to the Greedy heuristic.
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Compared to next smaller regime, Figs. 7.9a and 7.9b are again dominated by com-
parably large peaks. Each consists of three major peaks which are located closely
together with maximum values between 1.1 and 1.2 and a bit more separated with
top values between 1.2 and 1.4, respectively. Based solely on the largest lower bounds
ratios achieved, our QAOA was not able to keep the level of its quality in relation to
the Greedy lower bound that was found in Fig. 7.8a. Also, about neither of Fig. 7.9a
nor Fig. 7.9b we can say that the large share of subproblem qubit sizes for which the
quantum lower bound has beaten its classical counterpart that we have detected in
the whole 40-items regime could be conserved: The critical value of 1 is just exceeded
by the peaks and could not be reached anymore for subproblems larger than 80% and
65% of the original qubit cost, respectively. Hence, we need to infer that both - the
maximum improvement reached by our QAOA and the portion of non-rejectable nodes
in the search tree for which any improvement can be achieved - badly depends on
the specific KP instance on which the HQCBB is applied. However, it is important
to keep in mind that this Grover-mixer QTG-induced QAOA was capable of beating
our classical lower bound in at least one case for each set of underlying parameters
considered in this analysis - sometimes these cases even formed the majority.

7.3.2. Number of Explored Nodes

In Chapter 3, I went into the ultimate and superordinate motivation of our HQCBB
setup: From extending the classical Branch and Bound for the Knapsack Problem with
our QAOA we promised ourselves that the additional information may - in the ideal
case - lead to a measurable improvement of the pure classical algorithm. Collecting
and evaluating data for random benchmark instances to in detail investigate how the
lower bound provided by the QTG-induced QAOA performs in comparison to the
standard Greedy lower bound in Section 7.3.1 gave a close lookup into whether our
QAOA represents an actual competitor for the Greedy heuristic. However, this analysis
alone is like listing a set of arguments without being keen to draw a conclusion, as it
tells nothing about whether the partly achieved success of the quantum bound over its
classical counterpart is also sufficient to make a visible difference in the overall HQCBB
run at the end of the day. This is a question we shall direct our attention to now.

In order to compare the HQCBB performance we first need a suiting measure. There
are two natural choices offering themselves in general here: the computing time and the
number of explored tree nodes required to find the optimal solution. The comparably
high computational effort of our Grover-mixer QAOA induced by QTG makes that an
easy choice for us. Compared to the classical B&B, the essence of our HQCBB is to
execute the QAOA on top whenever a lower bound is to be calculated. This means that
the only chance of the hybrid being faster than its counterpart is that less lower bounds
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need to be evaluated. Even if non-optimal regions of the search space may be rejected
earlier thanks to better lower bounds, we suspect the comparably high computational
effort required to simulate our QTG-induced Grover-mixer QAOA on a classical machine
to hinder us from extracting an actual run time improvement - especially in the double-
digit range of items we are exploring. If at all, we expect to detect an improvement
on the less-influenced level of explored nodes where the differences in computational
expense between classical and quantum parts of the algorithm do not come into play.
In line with Section 2.1 terminology, a node is called explored in our simulation once it
is touched by the searching procedure, meaning that it ultimately gets removed from
the stack (either due to infeasibility or because a backtracking has occurred or a new
node is selected after a branching, see Algorithm 8).

Again, we will use our random generator in order to create KP instances of the
greatest representativity. The maximum value for profits and weights affects the qubit
requirements of the subproblems to which our QAOA is applied, as the latter depends
logarithmically on the capacity, which itself is set according to the sum of all weights.
However, this should in principle have no effect on the exploration of the search tree,
as both profits/weights and the capacity are up-scaled by approximately the same
factor when increasing their upper limit (assuming a fixed capacity ratio). In contrast,
independent of the actual values, the capacity ratio - determining how large the capacity
is compared to the sum of all weights - stands in direct correlation with the share of
feasible solutions among all possible 2N solutions (for a problem of size N). Since a
larger number of feasible solutions generally leads to a higher the amount of tree nodes
that cannot be pruned off, the capacity ratio, on the contrary, has an impact on the
number of explored nodes. The parameters in this last simulation part then are:

Number of items Capacity ratio Maximum profit/weight
5 0.25 103

10 0.19 104

15 0.135 105

20 0.08 106

25 0.07 107

30 0.06 109

35 0.05 1010

40 0.04 1011

45 0.03625 1013

50 0.0325 1015

55 0.02875 1016

60 0.025 1018

Table 7.10.: Parameter for random KP instances.
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While the number of items is iteratively increased in steps of 5 items, the exponent
characterizing the maximum profit/weight value grows by one or two. The capacity
ratio, on the other hand, simultaneously diminishes subject to three different slopes,
aligned to the regimes we introduced in Section 7.3.1: In the small-size regime (5 to 20
items) it decreases by a value of 0.05 to 0.06 in every step, the medium-size regime (20
to 40 items) features a clear loss of 0.01 in each iteration and the large-size regime (40
to 60 items) comes along with with very small reductions of 0.00375 each. This time,
the corresponding qubit requirements are not provided in Table 7.10 - simply because
they are not relevant for our analysis of the HQCBB performance.

As in Section 7.3.1, 10 equivalent KP instances will be generated for each combination
of parameters in Table 7.10 to promote generality. Completely analogous, the algorithm
run shall be repeated four times for every created problem instance to take care of the
probabilistic artifacts that have crept in our HQCBB via the node selection procedure
(cf. Algorithm 6). Next to investigating the influence of different circuit depths, we
here also want to compare the behavior of our classical framework where no QAOA is
executed at all (lower bound then always given by Greedy). Storing the number of
nodes necessary in order to arrive at the optimal solution yields the following results:
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Figure 7.10.: Average number of explored nodes for random KP instances generated using
the parameters in Table 7.10. For each parameter combination the simulation is performed
for 10 problem instances with the same specifications. For each generated instance, the
HQCBB is carried out four times. The error bars depicting the average of the resulting
standard deviations for the equivalent KP instances are not visible for being too small.
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For the capacity ratio and the maximum profit/weight value evolving as chosen in
Table 7.10 and described afterwards, the number of explored needs seems to scale
proportionally with the number of items. Fig. 7.10 shows a pretty accurate linear
dependency between these two quantities with a slope that seems to be a bit larger
than two. Without any further input we would rather expect an exponentially growth
in the number of explored nodes, since that holds for the number of possible solutions.
However, the continuously decreased capacity ratio in Table 7.10 can explain why its
increase is reduced to a linear scaling.

Striking about Fig. 7.10 is that it apparently lacks the existence of any error bars and,
in particular, that we can see only one curve of data points in the first place. The former
can only be reasoned by the standard deviations from the average numbers of explored
nodes being so small that they are not visible in our graphic. Concerning the latter, let
us elaborate on that in two parts, namely the different QAOA circuit depths among
each other and the comparison with the pure classical B&B configured by the strategies
described in Chapter 4. An exact overlapping between the data series associated with
the different depths is the confirmation that choosing a larger depth was indeed not
successful in terms of the aim to improve the performance of the HQCBB, at least for
the random sets of instances considered here. Even worse, a further overlap with the
classical data series automatically tells us that none of the depths was able to induce a
measurable effect. However, taking a closer look at Fig. 7.10 reveals a small splitting
of the curve’s course lasting from 45 items to 55 items. More precisely, the data point
corresponding to the classical runs at 50 items is shifted slightly to the top compared
to those associated with the depths p ∈ {1, 3, 5, 10}. Although there are no further
splittings for the different depths, this represents a success, as our HQCBB was in this
case indeed able to outperform its pure classical analogue in terms of the number of
explored nodes. In Section 7.3.1 we saw that outstanding improvements on the Greedy
lower bound in a magnitude of about 60% were only very rarely attained by the QAOA.
The vast majority of the found improvements instead showed a plus smaller than 30%.
Therefore, the prospects for achieving more significant reductions on a global scale like
for the number of explored nodes were not very promising, meaning that the minor
success in Fig. 7.10 could not be reasonably formulated as a clear expectation.

Back to the (Classical) Roots

Let me close the investigation of possible performance optimizations in terms of the
number of explored nodes via our hybrid ansatz with a general heads-up. As emphasized
above in the discussion to figure out the measure to apply, simulating the QAOA
circuit seen in Fig. 6.12 on a classical device is computationally expensive, especially
with growing depth. In line with our motivation in Section 7.1, emulating the circuit
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execution with our high-level simulator may have enabled to tackle problem instances in
the preceding analyses that would otherwise have been intractable. However, this does,
of course, not mean that the problem sizes which our QAOA is capable of handling in
a reasonable amount of time can compete with the sizes that a pure classical Branch
and Bound built according to Chapter 4 is able to solve. To illustrate that, let us
perform the same simulation examining the amount of nodes that is necessary to find
the optimal solution for the classical B&B part of the HQCBB where the quantum
extension is removed again. For the following parameters this classical simplification
had no issues in solving the accordingly generated KP instances to optimality:

Number of items Capacity ratio Maximum profit/weight
500 {0.1, 0.2, 0.3, 0.4, 0.5} 1000
1000 {0.1, 0.2, 0.3, 0.4, 0.5} 1000
1500 {0.1, 0.2, 0.3, 0.4, 0.5} 1000
2000 {0.1, 0.2, 0.3, 0.4, 0.5} 1000
2500 {0.1, 0.2, 0.3, 0.4, 0.5} 1000
3000 {0.1, 0.2, 0.3, 0.4, 0.5} 1000
3500 {0.1, 0.2, 0.3, 0.4, 0.5} 1000
4000 {0.1, 0.2, 0.3, 0.4, 0.5} 1000
4500 {0.1, 0.2, 0.3, 0.4, 0.5} 1000
5000 {0.1, 0.2, 0.3, 0.4, 0.5} 1000

Table 7.11.: Parameters to generate random KP instances for simulating the number of
explored nodes in the classical B&B.

For simplicity, the upper limit for profits and weights is chosen equally in any considered
problem instance with a value of 1000. Since there is no circuit depth that can be
varied in the classical setting, we create five sets of instances with different capacity
ratios for any size. As described above, the share of the capacity by the sum of all
weights has a major impact on the number of feasible solutions and - thereby - on the
number of non-rejectable tree nodes that need a lower bound assigned. Compared to
Table 7.10, Table 7.11 suggests that the instances handled in the classical setting are
about a 100-times larger than those considered before where the QAOA was still in
place. Decreasing the calls to compensate probabilistic misleadings, the generation of
five equivalent KP instances for every combination of parameters as well as carrying
out the classical B&B twice for each oft them results in Fig. 7.11.

On average, every data series in Fig. 7.11 shows - aggregated over the full range -
the expected behavior for the number of explored nodes, namely that it grows with
the amount of items. However, we apparently did not find the same almost perfect
linear dependency that we saw in Fig. 7.10. Instead, the data points seem to approach
an upper limit when the number of items per KP instance is increased, ignoring the
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erated instance, the classical
B&B is carried out twice.

strong rise of the data series corresponding to a capacity ratio of 0.3 in the right half of
Fig. 7.11 and the jump in the last step at the largest ratio between capacity and total
sum of weights of 50% for the moment. The sudden rise at 3000 items for a capacity
ratio of 0.4 as well forms a moderate exception to that observation. In comparison
to Fig. 7.10 where not a single averaged standard deviation was large enough to be
visible, there are is a handful of data points featuring non-vanishing error bars here,
most notably at 3000 items and a capacity ratio of 0.4 again. However, an in depth
analysis and explanation of the behavior of the different data series in Fig. 7.11 is
not of significance to us, it should just be demonstrated that the classical Branch and
Bound in our HQCBB is capable of performing the same simulation of global algorithm
properties for much larger problem instances.
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We have come to the end of the thesis, meaning that it is about time to draw an overall
conclusion on what has been done in the past chapters and give an outlook on further
research directs. This will provide the possibility to make a final condensed statement
about the meaning and the value of the present work.

In retrospect, the raison d’être of this thesis is three-fold: First and foremost, the
fundamental motivation was to utilize a quantum algorithm to enhance classical Branch
and Bound techniques, here at the example of the Knapsack Problem. The B&B
algorithm (which can actually better be understood as an algorithmic framework as we
have seen) one of the most commonly used classical algorithms to solve combinatorial
optimization problems. It owes its popularity to its generic and highly customizable
formulation, making it applicable to pratically any ILP. The specific choice of a
quantum algorithm is then connected to the second point of interest: The Quantum
Tree Generation developed by Wilkening et al. [Wil+23] as part of their quantum
algorithm for the Knapsack Problem creates a superposition of all feasible states for a
given KP instance. Thereby, it brings itself into the pole position for being extracted
and afterwards recycled in the shape of a state preparation in a Quantum Alternating
Operator Ansatz following the Grover-mixer approach [BE20] that shifts the (usually
very large) effort needed to construct a suiting mixer to designing a procedure for
preparing the highly non-trivial initial state. For a given problem instance consisting of
N items and a capacity of Wmax, we need N + blogWmaxc+ 1 qubits to implement the
resulting QAOA, as was explained in Chapter 5. The concept of extending the Branch
and Bound with this QAOA by introducing it as an alternative (quantum) lower bound
was based on the consideration that adding information to the algorithm will only
increase the lower bound quality, hopefully inducing an improved performance of the
algorithm by helping to avoid the exploration of non-optimal search space regions. In
Sections 6.1 and 6.2 we derived that our QAOA features a complexity O(N log(Wmax)2)
of more or less elementary gates of which the most are one or two-qubit unitaries. The
third component which I meant above then came into play when actually simulating
the final QAOA circuit we arrived at with Fig. 6.12: Inspired by Wilkening et al.
[Wil+23], a high-level simulator was developed that allowed us to investigate KP
instances featuring qubit requirements of up to 120 in Chapter 7. This simulator
extended the classical emulation of the QTG by simple analytical formulae for the
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action of the mixing and the phase separation unitaries; as discussed in Section 7.1, it
was capable of outperforming its conventional counterpart of actually simulating the
qubits on the classical machine thanks to the reduction in dimension, as the capacity
register could be completely eliminated. On the considered problem instances, which
were randomly generated based on certain parameters to guarantee representativity,
we could indeed observe cases in Section 7.3.1 where our QTG-induced Grover-mixer
QAOA managed to beat the Greedy lower bound - and not too few of them. Even
further, there was no set of KP instances among the different parameter configurations
for which we could not find any improvement on the Greedy heuristic throughout the
runs of the HQCBB; for certain subproblems we even achieved a QAOA-surplus of
60%. This is an excellent result taking into account the effectiveness of the Greedy
lower bound. What could, on the contrary, not be verified is a significant impact of
the circuit depth. The mainly small relative exceedings of the Greedy threshold seen
in Figs. 7.6 to 7.9 did not really give us reason to expect performance improvements
of the whole HQCBB to be detectable on global scale. The corresponding simulation
results in Fig. 7.10 are in line with this suspicion. Nevertheless, we found one set of
KP instances - each composed of 50 items - where the number of explored nodes is on
average slightly smaller when adding the quantum lower bound as an alternative to
the classical one. This is a minor success, but represents a true enhancement.

Fig. 7.11 impressively illustrates that we must not succumb to the illusion of already
being in a state where the approach pursued in this thesis can lead to a general
improvement even on the large scale, especially not with the local resources available
here. The magnitude of the number of items forming the simulation basis for Fig. 7.11
implies that emulating the designed QAOA circuit on a classical device can by no
chance compete with the Greedy routine in terms of computing time. However, this
was clear from the offset and has never been anywhere near a declared goal of this thesis.
The essential learning here is that it took very much effort to build a QAOA that
is capable of tackling medium-size problem instances and beating a well-established
classical method which could hardly be simpler. Based on these drawbacks, let me
state the real heritage of my work: Instead of just handling the two extreme cases
where the quantum extension is either present and integrated as desired or removed
completely (which means that we are back in the pure classical setting), we now have the
ability to merge these two configurations by only applying the QAOA if the currently
explored (non-prunable) subproblem is small enough and calculating the Greedy lower
bound solely otherwise. Thereby we do not have to restrict to medium-size problems,
meaning that there is no instance solvable by the classical B&B configured according
to Chapter 4 that cannot be tackled by the HQCBB in a reasonable amount of time,
while the advantage of possible performance improvements (in terms of explored nodes)
is maintained. The criteria determining whether a subproblem is small enough for
the QAOA application can then be specified according to the available hardware and
resources; usually, the qubit cost will be the limiting factor with which that rule must

Page 118 of 141



Conclusions & Outlook

be aligned. Based on the experiences we made in Chapter 7, the capacity ratio as the
critical quantity would be the better choice when having our high-level simulator at
hand. This final step combines the best of both worlds; the underlying concept can,
as emphasized in the introduction, be considered one of the most promising paths
for quantum computing to become relevant and make a difference on the industry
scale. Nevertheless, I decided to conduct the simulations of the lower bounds and
the numbers of explored nodes in Section 7.3 not on this unified level, but in the
stage where the QAOA is either applied or not, to keep the visualization and the
analysis of the results straight-forward (for the lower bound comparison this ultimate
refinement is not even relevant). With the idea of making large problems tractable
for state-of-the-art quantum algorithms despite the current omnipresent hardware
constraints by reducing the qubit costs we are, of course, not alone: Ponce et al.
[Pon+23] for example demonstrated recently how large instances of the so-called Max
Cut Problem1 - as an exemplary QUBO (quadratic unconstrained binary optimization)
problem - may be solved to a good approximation using a QAOA by employing a
preprocessing that decomposes the input graph into smaller graphs with smaller qubit
requirements.

The last anecdote brings us to the following question: What about other problems
than the Knapsack Problem? By design, the concept of enhancing Branch and Bound
techniques by quantum approximate optimization is not specifically tailored to the
Knapsack Problem. It may even be desirable to consider combinatorial optimization
problems with a more complex structure - as emphasized in Section 1.3, the Knapsack
Problem is a standard example for which the existing classical algorithms are so
advanced that they can solve instances consisting of up to 100,000 items within a few
seconds [MT90, S.2.10].2 Instead of challenging the whole problem, one may also take
a step back and extend the simulations and the analyses of their results to different
structures among the items: While our generator exclusively picked values for profits
and weights according to an even probability distribution when randomly creating
KP instances in Chapter 7, this is by far not the only possibility. More specifically,
there are three common correlations between the profits and the weights studied across
the literature: In the simplest case where both profits and weights are chosen as
random integers not exceeding a specified maximum value (as in our case) the items
are also called uncorrelated; when each weight is picked uniformly random from this
interval, but the profit can then only be chosen randomly in a certain distance from
the corresponding weight, one says the items are weakly correlated; we talk about
strongly correlated items in case that the randomly drawn weight also determines the

1Max Cut is an NP-hard problem whose task is, given an input graph consisting of vertices and edges,
to find that partition of the vertices in two disjoint sets where the number of edges connecting
differently assigned vertices occupies its maximum value.

2Recall from Definition 1.14 that its objective function is linear in the input binary variables and
only one constraint is needed to formulate it.
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associated profit which is just shifted by a positive constant. How our simulation
results change when generating instances with weakly or even strongly correlated items
instead of uncorrelated ones could be investigated further in a follow-up. Increasing
the correlation generally corresponds to a shrinking difference between the largest
and the smallest effective profit3, which in turn can be expected to lead to a more
complex problem [MT90]. Despite these artificially increased levels of difficulty, the
state-of-the-art classical algorithm with name COMBO could be shown to be capable
of solving each benchmark instance from the three correlation types with up to 10,000
items in less than 0.2 seconds [MPT99]. It is not without reason that Pisinger [Pis05]
consequently pursues the question ”Where are the the hard knapsack problems?”. In
terms of other combinatorial optimization problems, one could e.g. move in a more
graph-theoretical direction and set up a classical Branch and Bound for the Graph
Coloring Problem4. Since Graph Coloring is a minimization problem - in contrast
to the Knapsack Problem - the output of a QAOA can, by an analog reasoning as
in Section 2.2.2 with flipped sign, directly be used as an upper bound in the B&B
algorithm. The rich variety of interesting graph theoretical quantities even allows to
also introduce a quantum lower bound: It is easy to verify that the outcome of the Max
Clique Problem5 bounds the chromatic number of the graph at hand from below (there
are at least as many colors needed for a graph as there are vertices in its maximum
clique), meaning that a QAOA for Max Clique would automatically provide a quantum
lower bound for the Graph Coloring B&B. A further refinement could be made by
additionally considering the Max Independent Set Problem6, which would serve as
an alternative to applying the Max Clique QAOA, based on whether the complement
graph can be formulated with less variables, implying a fewer number of qubits to
simulate. Lucas [Luc14] shows for each of these three graph theoretical problems -
among a whole bunch of NP-complete and NP-hard problems - how their constraints
may be wrapped inside the objective function and how to derive an Ising formulation
from that by using spins instead of variables, which can afterwards be transformed to

3The effective profit is the ratio of an items profit and its weight; we introduced it when sorting the
items as a preparation for calculating the Greedy bounds in Section 4.2.

4Graph Coloring is an NP-hard optimization problem that asks, given a graph, to find the smallest
number of different colors required to dye every vertex such that no two adjacent vertices (i.e.
vertices that are connected by an edge) have the same color assigned. The minimum value is called
the chromatic number.

5Max Clique is another NP-hard optimization problem which, as the name suggests, aims at finding
the largest clique in a graph. A clique in turn denotes a complete subgraph, i.e. a subgraph in
which any vertex is adjacent to any other.

6Like the other two, Max Independent Set is provably NP-hard; given a graph, the object of desire
here is the largest set of independent vertices or, more precisely, its size. A vertex subset is
called independent if no two of the contained vertices are adjacent. It is not difficult to convince
yourself that Max Clique transforms to Max Independent Set in the transition from a graph to its
complement graph where a pair of vertices is connected by an edge if that was not the case in the
original graph and vice versa.
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its quantum version by replacing the classical spins with the associated Pauli matrices.
This process is an example of softcoding constraints (cf. Section 2.2.2) and leads to
phase separation operators in the sense of the Quantum Ising model [Dzi05], which in
combination with the standard mixer from Eq. (2.2.4) make Softconstraint QAOAs.
For Graph Coloring and Max Independent Set Hadfield et al. [Had+19, Ss.4.2&4.4]
discusses design criteria for suitable mixers in line with Section 2.2.3 that enable to
treat them as hardconstrained problems and guarantee the preservation of feasibility
throughout the respective quasi-adiabatic evolution. Max Clique is there handled
via its relation to Max Independent Set [Had+19, A.2.2].7 However, it cannot be
guaranteed that a comparable high-level simulator can also be set up for these three
graph theoretical problems. The hope to be able to extend the simulation concept
developed by Wilkening et al. [Wil+23] for the QTG in a similar straight-forward
fashion to the residual Grover-mixer QAOA logic (which we could confirm) as well as
the prospect to investigate a yet unevaluated mixer formed the motivation to consider
the Knapsack Problem of all things. Although COMBO performs that well on every of
the analyzed correlation types [MPT99], the findings of Pisinger [Pis05] indicate that
there is still legitimate research interest in the Knapsack Problem. On the quantum
side, a huge step has just been made by Wilkening et al. [Wil+23], who where able
to be the first to test a quantum algorithm on realistic benchmark instances8. Their
results suggest an advantage of the quantum algorithm over COMBO in terms of
computing time starting at instances with 600 variables. The memory savings however
are even more drastic: While the number of required logical qubits in their algorithm
scales proportionally with the number of items, 1010 involved bits is the magnitude
in which COMBO operates. The full consequences of the these results remain to be
seen. For a good reason we were not able to simulate such large KP instances in
Chapter 7: An important ingredient of the QTG in [Wil+23] is to not only discard
infeasible solutions but to also iteratively sort out all (possibly feasible) solutions whose
associated profit does not exceed a threshold determined by COMBO. This additional
selection procedure reduces the final number of states to keep to an extent that allowed
them to consider up to 1600 variables. Introducing such a threshold in our QTG is
prevented by the structure of the employed Grover mixer, given by Eq. (5.2.1), that is
based on the superposition of all feasible states and not only the ones that pass some
quality check. The threshold in [Wil+23] furthermore made the use of biased Hadamard
gates possible in the QTG implementation, pushing an item register qubit from state
|0〉 into superposition |0〉+ |1〉 with a lower or larger probability depending on whether
the corresponding variable has value 0 or 1 in the COMBO solution, respectively. In
a further refinement of our implementation (cf. Section 6.1) one could try to utilize

7Note that proposing a mixer for Max Independent Set that does not require a softcoding was even
already part of the original QAOA work by Farhi, Goldstone, and Gutmann [FGG14].

8A true quantum advantage can obviously never be possible as long as quantum algorithms are not
even capable of simulating those benchmark instances that are used to assess the performances of
aspiring classical algorithms. This would typically require about 100 to 10,000 qubits.
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the Greedy lower bound obtained at a subproblem immediately before the QAOA
application in Algorithm 10 as a bias for the Hadamard gates.

What has been completely disregarded so far is the disadvantages that come along
with QAOA as a quantum algorithm in general. In a first step, we moved from
a Softconstraint Quantum Approximate Optimization Algorithm to a more general
Quantum Alternating Operator Ansatz due to the inability of the original QAOA to
properly handle constraints. However, there are still inherent things following from the
way how the QAOA is defined that might make it not the ideal choice. A prominent
example are the so-called barren plateaus - regions where the gradient of the objective
function vanishes exponentially in the number of qubits - which naturally impose an
impediment on the success for a derivative-based optimization routine. The occurrence
of barren plateaus is however not QAOA-specific, but can be rather understood as a
phenomenon that is related to parameterized quantum circuits in general, especially in
the deep case where many layers are run by variational quantum algorithms [McC+18].
As emphasized in the introduction, VQAs provide our best chance to achieve a quantum
advantage in the medium term on NISQ devices for leveraging classical computation
power in the outsourced the parameter optimization and thereby keeping the qubit
requirement as low as possible [Cer+21]. Hence, it is preferable to try overcoming - or
at least mitigating - the obstacle of barren plateaus in VQAs instead of fully changing
the course. Binkowski et al. [Bin+23] recently proposed a strategy in this regard: By
extending a given VQA with a routine of non-unitary operations, implemented via
the LCU (linear combination of unitaries) method [CW12; Cha23], which is applied
whenever the gradient falls below a certain threshold, one can trigger the classical
optimization to jump out of the corresponding barren plateau. This additional logic
comes at the cost of mid-circuit measurements and a rather small register of ancilla
qubits. It is, in fact, promoted to just be the start of a larger framework called quantum
conic programming (QCP). The promising results obtained for Max Cut suggest that
extending our QAOA as demonstrated in [Bin+23] could make our quantum setup
more robust against typical pitfalls like barren plateaus on the one hand and even
increase the approximation quality of its solutions on the other.

Last but not least, we should question the classical components of our HQCBB in
Algorithm 8. Although Branch and Bound as an algorithmic family may be configurable
and therefore applicable to any ILP, this does not necessarily mean that it is also
the best algorithm for every problem. Even in case of the Knapsack Problem, the
best available classical solver - COMBO - is based on Dynamic Programming (DP)
instead of Branch and Bound. As derived in Appendix A, DP provides a reliable
pseudo-polynomial time bound O(NWmax) which cannot be stated in a similar fashion
that easily for B&B as discussed in Section 2.1.1. Future directions of research could
thus be to examine other well-performing classical algorithms - applied to KP or a
different COP - in the regard of possible enhancements via VQAs. A final fair point
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can be made by asking whether the Greedy heuristic is too simple to send it as the
classical representative into the ring where the better lower bound is fought out. It is
actually pretty simple to come up with a KP instance for which the plain method in
Algorithm 4 underlying the Greedy lower bound fails badly in returning a satisfying
approximation to the optimal solution: Let N = 2 and Wmax = M with M ∈ N; let
the profits then be p = (2,M) and choose the weights as w = (1,M). In this case
the procedure sorting the items according to their efficiency (cf. Section 4.2.1) does
not change the order of the two elements. Hence, applying Algorithm 4 here yields
a profit value of 2 while the optimal solution consists of packing the second item,
featuring a value of M . Choosing M arbitrarily large shows that no non-vanishing
performance guarantee can be associated with Algorithm 4. However, a one-liner trick
can be shown push the performance guarantee to 1

2 : Instead of returning the profit
collected throughout the iteration in Line 10, output that value or the largest profit
depending on what is greater [KPP04, Thm.2.5.4]. Since a lower bound which in the
worst-case reaches only half the optimal solution value is still not very impressive, this
slightly extended Greedy heuristic can be pushed to an ε-approximation scheme (ε ≤ 1

2)
with a performance guarantee of 1 − ε by first searching for the best value among
all sets of less than l = min{d1

ε
e − 2, N} selected items and afterwards proceeding

with the solutions of Hamming weight9 l which are filled up by the remaining items
of smaller profits via the improved Greedy in case of a non-zero residual capacity
[KPP04, Thm.2.6.2].10 Depending, of course, on the actual number of items, it would
be interesting to see whether our QAOA is also able to beat an improved Greedy
heuristic once the capacity is (assuming a small ε) such that N l(ε)−1 and log(Wmax)2

are of the same magnitude, meaning that both quantum and classical lower bound
would in principle share comparable computing times.

In the face of the open questions and various directions in which this work could be
extended in future research that I have elaborated on above, let me conclude with
picking up on an introductory statement by highlighting the intangible value inherent
in this thesis: showcasing a proof of concept for how well-established and far-developed
classical algorithms applied to NP-hard combinatorial optimization problems may be
enhanced by the use of VQAs. The crucial feature that the extent to which they are
employed can be adjusted to the available hardware resources makes this approach
interesting for the industry scale even in the NISQ-dominated medium term.

9The Hamming weight denotes the number of entries in a bitstring with value 1 (or, more specifically,
with values different from 0).

10Obviously, this enhancement of the Greedy lower bound comes with an increase in computing
time to O(N l) [KPP04, Ss.2.6&6.1]. Not to forget are also the even stronger growing memory
requirements; this issue is e.g. addressed by Kellerer and Pferschy [KP99].
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A. Dynamic Programming

The general solving technique called Dynamic Programming (DP) was developed by
Bellman [Bel72] in a time where classical computers were approximately what quantum
computers are nowadays. DP is frequently used in the context of the Knapsack Problem
(cf. Section 1.3) and represents the strongest contender to Branch and Bound (cf.
Section 2.1). In principle, it is applicable to any kind of optimization problem with
an optimal substructure and overlapping subproblems, meaning that the optimal
solution to the full problem can be obtained by combining the optimal solutions
to the subproblems generated for it and that an algorithm solving the full problem
also solves the same subproblems again and again. In a nutshell, DP tries to find
a recursion relation for the specific problem at hand and store intermediate results
in order to not start from scratch again in every iteration step as it is the case in a
brute-force search approach. Applied to the Knapsack Problem, let P̂ (wmax, n) for
wmax ∈ {0, ...,Wmax}, n ∈ {0, ..., N} denote the highest total profit that can be achieved
using items 1, ..., n with the cost being limited to at most wmax for a given KP instance
consisting of N items and a capacity Wmax in the sense of Definition 1.14, i.e.

P̂ (wmax, n) = max
n∑

j=1
pjxj s.t.

n∑
j=1

wjxj ≤ wmax for xj ∈ {0, 1}.

The Knapsack Problem in this notation thus asks for finding P̂ (Wmax, N). By explicitly
writing out a table with rows indicated by n = 0, ..., N and columns labeled by
wmax = 0, ...,Wmax for a small KP instance with first increasing columns than rows
you can comprehend that P̂ (wmax, n) is given by

P̂ (wmax, n) =
®
P̂ (wmax, n− 1) , if wn > wmax

max
¶
P̂ (wmax, n− 1), P̂ (wmax − wn, n− 1) + pn

©
, otherwise

(A.1)

with initial values P̂ (wmax, 0) = 0 ∀wmax ∈ {0, ...,Wmax} as it is obviously not possible
to afford any profit if no item is allowed to be included in the knapsack. This is called
the Bellman recursion for KP. The first case in Eq. (A.1) in the context means that
item n is too expensive for the current cost bound wmax. The second case covers the
other two possibilities, namely that item n is affordable but does not improve the best
value for P̂ found in the previous iteration and that it is affordable and indeed yields an
improvement; the latter implies both that the permitted cost wmax needs to be reduced
by the weight of item n and that the corresponding value for P̂ can be increased by its
profit. We can then obtain P̂ (Wmax, N) via the iterative procedure in Algorithm 11.

One can show via induction that Algorithm 11 indeed produces the optimal solution
value to the given KP instance. Furthermore, Algorithm 11 implies that the Knapsack
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Algorithm 11: Dynamic Programming (KP)
1 for wmax ∈ {0, ...,Wmax} do
2 Set P̂ (wmax, 0) = 0
3 for n ∈ {1, ..., N} do
4 for wmax ∈ {0, ..., wn − 1} do
5 Set P̂ (wmax, n) = P̂ (wmax, n− 1)
6 for wmax ∈ {wn, ...,Wmax} do
7 if P̂ (wmax − wn, n− 1) + pn > P̂ (wmax, n− 1) then
8 Set P̂ (wmax, n) = P̂ (wmax − wn, n− 1) + pn

9 else
10 Set P̂ (wmax, n) = P̂ (wmax, n− 1)

11 return P̂ (Wmax, N)

Problem can be solved to optimality within O(NWmax) complexity. Therefore, KP
is said to be solvable in pseudo-polynomial time, as the required computing time is
a polynomial in the numeric value of the inputs but not necessarily in the length of
the inputs (the number of bits needed to represent them) - the capacity Wmax may
actually grow exponentially in the problem size, i.e. the number of items. Due to the
existence of such an algorithm, the decision version of the Knapsack Problem is called
weakly NP-complete.
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B. Nelder-Mead Method

Algorithm 12: Nelder-Mead
1 Initialize 2p+ 1 test points χ1, ...,χ2p+1
2 while termination condition not satisfied do
3 Find a permutation π of {1, ..., 2p+ 1} such that the test points are sorted in

ascending order as Ep(χπ(1)) ≤ Ep(χπ(2) ≤ ... ≤ Ep(χπ(2p+1))
4 Calculate the geometric center χ0 of the point set {χπ(1), ...,χπ(2p)}
5 Calculate the reflected point χr = χ0 + a(χ0 − χπ(2p+1)) with a > 0
6 if Ep(χπ(1)) ≤ Ep(χr) < Ep(χπ(2p)) then
7 χπ(2p+1) ← χr

8 continue
9 else if Ep(χr) < Ep(χ1), i.e. χr is the best point so far then

10 Calculate the expanded point χe = χ0 + b(χr − χ0) with b > 1
11 if Ep(χr) ≤ Ep(χe), i.e. not even χe is better than χr then
12 χπ(2p+1) ← χr

13 else
14 χπ(2p+1) ← χe

15 continue
16 else
17 if Ep(χr) < Ep(χπ(2p+1)) then
18 Calculate the contracted point χ(o)

c = χ0 + c(χr − χ0) on the outside
with 0 < c ≤ 1/2

19 if Ep(χ(o)
c ) < Ep(χr) then

20 χπ(2p+1) ← χ(o)
c

21 continue

22 else
23 Calculate the contracted point χ(i)

c = χ0 + c(χπ(2p+1) − χ0) on the
inside with 0 < c ≤ 1/2

24 if Ep(χ(i)
c ) < Ep(χ(i)

c ) then
25 χπ(2p+1) ← χ(i)

c

26 continue

27 χπ(j) ← χπ(1) + d(χπ(j) − χπ(1)) ∀ j ∈ {2, ..., 2p+ 1} with 0 < d ≤ 1/2
28 χj ← χπ(j) ∀ j ∈ {1, ..., 2p+ 1} (reversal of the permutation)
29 return argmin

j∈{1,...,2p+1}
Ep(χj)
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Appendix B. Nelder-Mead Method

Algorithm 12 depicts the general Nelder-Mead method where we compactly write
χ = (β,γ) ∈ [0, π)p× [0, 2π)p for the parameters to be optimized by the routine. What
should be noted is that the heuristic inducing the termination condition in Line 2 is
an important ingredient of Algorithm 12 that influences the quality of the returned
solution. Nelder and Mead [NM65] used a certain tolerance below which the standard
deviation of function values corresponding to the points of the current simplex needs to
fall for the iterative procedure to break. Analogously, the effect of the initialization in
Line 1 should not be underestimated: An initial simplex whose volume is, for instance,
too small may lead to a search that is confined in a local region.
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Appendix C. Quantum Circuit Notation

C. Quantum Circuit Notation

Let me provide a brief overview of the typical notation for drawing quantum circuits
in order to provide clarity and facilitate the comprehension of Chapter 6 where the
implementation of the QTG and the Grover mixing and phase separation unitaries is
showcased. However, there is no claim to completeness; a more extensive introduction
to the quantum circuit model is e.g. given by Nielsen and Chuang [NC10, Ch.4].

A class of simple diagrams following certain construction guidelines is mostly used to
depict quantum circuits - the term ”circuit” even refers to this type of visualization,
inspired by electric circuits. In this model, a horizontal line - also called wire - represents
a single qubit. A unitary operation (a gate) U is then usually denoted by a rectangle
with an according label. This is everything we need for the simplest imaginable
(non-trivial) quantum circuit:

U Figure 1.: Simplest possible non-trivial quantum circuit consisting
of only one gate U acting on a single qubit.

Special single-qubit gates are the Pauli-x operator X ≡ σx :=
Å

0 1
1 0

ã
and the

Hadamard gate H = 1√
2

Å
1 1
1 −1

ã
(cf. Section 2.2.1), represented as

X

(a) First representation of the
Pauli-x operator, referring to
its index in the set of Pauli
matrices.

(b) Second representation of
the Pauli-x operator, reflecting
its action given by |0〉 7→ |1〉
and |1〉 7→ |0〉.

H

(c) Representation of the
Hadamard transformation.

Figure 2.: Elementary quantum circuits holding only standard single-qubit gates.

In case of more than just one gate, the diagrams are to be read in the usual flow from
left to right. Note that the order of application cannot be ignored, as two quantum
operators generally do not commute. If the quantum circuit operates on more than
one qubit (which is the case most of the time), labels on the left hand side of the wires
are often added to distinguish the involved qubits. These can either refer to the index
of a qubit in a certain register (typically written as a capital letter abbreviating the
register and square brackets holding an index, e.g. R[i]) - a quantum circuit may be
composed of multiple qubit registers - or to indicate the input to the circuit, i.e. the
initial state of the respective qubit before the circuit is applied. On the contrary, the
right hand side of a wire is usually only non-empty in the latter case where it is used
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to depict the qubit’s output state (the index of a register does not change in the course
of the circuit application and does not need to be written twice). The trivial example
for more than one employed qubit is the occurrence of a two-qubit (or multiple-qubit)
gate. This is displayed via rectangles spanned over the wires of all affected qubits.
In case that the involved qubits are separated by other qubits, an empty gate and a
vertical connection are - at least in this thesis - used to emphasize that. The following
should cover the important cases:

|ψi⟩
U

|ψf ⟩

|ϕi⟩ |ϕf ⟩

(a) Two-qubit unitary U acting on initial states
|ψi〉 , |φi〉; yielding output states |ψf 〉 , |φf 〉.

...

R[1]

U

R[2]

R[L− 1]

R[L]

(b) Unitary U acting on all L register-R qubits.

...

...

R1[1]

U

R1[L1]

R2[1]

R2[L2]

(c) Unitary U acting on all L1 qubits in the
register R1 while none of the qubits in the register
R2 with size L2 is affected.

...

...

R1[1]

U

R1[2]

R1[L1]

R2[1]

R2[L2 − 1]

R2[L2]

(d) Unitary U acting on some qubits contained
in register R1 and some from register R2.

Figure 3.: Elementary quantum circuits for different variants of multiple-qubit gates U .

An important special case of multiple-qubit operations is a controlled gate where a
single-qubit operation U shall only be applied if one more other qubits are in certain
states, either |1〉 (denoted by a filled dot) or |0〉 (empty dot). For the simplest case of
only two qubits where the first is w.l.o.g. assumed to be the target, see Fig. 4.

A quantum circuit may, in some sense, also depend on classical bits. Their non-quantum
character is incorporated via doubled wires. If an operation is controlled on a classical
bit, the vertical line used to denote a control in Fig. 4 is drawn twice analogously.
Inputs to classical bits are embedded in round brackets instead of ket symbols; register
indices however do not have a different notation. In principle, the circuit in Fig. 4a
thus transforms to Fig. 5 when the second entry is of classical nature instead.
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|ψi⟩ U |ψf ⟩

|ϕi⟩ |ϕf ⟩ = |ϕi⟩

(a) Control on state |1〉.

|ψi⟩ U |ψf ⟩

|ϕi⟩ |ϕf ⟩ = |ϕi⟩

(b) Control on state |0〉.

Figure 4.: Elementary quantum circuits with input states |ψi〉 , |φi〉 and output (final) states
|ψf 〉 , |φf 〉 for a unitary U controlled on the second qubit. The input and output states on
the second register entry are equal, since a control has no effect on the qubit’s state.

|ψi⟩ U |ψf ⟩ = (1− bi) |ψi⟩+ biU |ψi⟩

(bi) (bf ) = (bi)

Figure 5.: Elementary quantum circuit
with input state |ψi〉 on the first entry and
value (bi) on the second as well as output
(final) states |ψf 〉 , (bf ) for a unitary U
controlled on the classical bit having value
1. The input and output values of the
classical bit are equal, since a classical
control has no effect on the qubit’s state.

Analogously, we obtain the circuit for a gate U controlled on a classical bit with value
0. Note that controlling on a classical bit is nothing but a conventional ”If” statement.
Of course, a gate might also be controlled on more than one qubit or bit; the circuit
diagrams reflect this by extended vertical lines with breakpoints at the control (qu-)bits.
Interesting in particular is how to denote controls that include both qubits and classical
bits. Exemplary circuits can be viewed in Fig. 6.11 Moreover, a bundle of classical
wires (three closely spaced horizontal lines) stands for a collection of classical bits, e.g.
to collapse multiple bits encoding a classical quantity.

One custom notation needed to be introduced in this thesis: At some point, we wish
to control an operation on another qubit and an additional classical bit where the
explicit state of on which the gate is controlled depends on the bit value. For example,
a unitary U could be applied to the first qubit in a quantum register RQ when a second
qubit in that register is in state |1〉 if a classical bit carries value 1 or when it is in state
|0〉 if the classical bit has value 0. This generalization is pretty useful in situations
where the classical bit represents a circuit parameter. We will use black squares on
both the quantum and the classical control wire to indicate such a dependency.12 In
order to keep the circuit diagrams as simple and lucid as possible, we establish the rule
that qubits and classical bits belonging together share the same index in their quantum
and classical registers in case that a gate features multiple unspecified controls. This

11In this work, quantum registers will always be printed above classical ones.
12Beware that there are, in contrast to the usual control symbols seen above, no empty squares - the

different shape alone allows to promote the switch to an unspecified control.
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...

...

RQ[1]

U

RQ[2]

RQ[LQ]

RC [1]

RC [2]

RC [LC − 1]

RC [LC ]

(a) Unitary U acting on two
positions in the quantum reg-
ister RQ, controlled on three
bits with value 1 from the clas-
sical register RC .

...

...

R1[1]

U

R1[2]

R1[L1]

R2[1]

R2[2]

R2[L2 − 1]

R2[L2]

(b) Unitary U acting on two
positions in the first and one
position in the second register,
controlled on two qubits from
the second register, one each
on being in state |1〉 and |0〉.

...

...

RQ[1]

RQ[2] U

RQ[3]

RQ[LQ − 1]

RQ[LQ]

RC [1]

RC [LC ]

(c) Single-qubit unitary U be-
ing controlled on three qubits
from the quantum register RQ

(once on state |1〉 and twice on
state |1〉) and one bit in the
classical register RC .

Figure 6.: Elementary quantum circuits for different variants of multiple-controlled gates U .

should become clearer with Fig. 7 as an example. Note that, as suggested by Fig. 7,
this logic can be arbitrarily combined with usual controls, multiple-qubit gates and
everything else.

...

...

RT [1] U

RQC [1]

RQC [2]

RQC [LQC ]

RCC [1]

RCC [2]

RCC [LCC ]

(a) Single-qubit unitary U , controlled i.a. on the
first RQC-qubit being in state |RCC [1]〉.

...

...

RT [1] U

RQC [1]

RQC [2]

RQC [LQC ]

RCC [1]

RCC [2]

RCC [LCC ]

(b) Single-qubit unitary U , controlled i.a. on
the first RQC-qubit being in state |RCC [1]〉 and
the second in state |RCC [2]〉.

Figure 7.: Elementary quantum circuits for unspecified controls with target registers RT ,
quantum-controlling registers RQC and classical-controlling registers RCC .

The notation elaborated on here should be sufficient to avoid ambiguity in Chapter 6.
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