Finite-size spectrum of the staggered six-vertex model with antidiagonal boundary conditions

verfasst von
Holger Frahm, Sascha Gehrmann
Abstract

The finite-size spectrum of the critical staggered six-vertex model with antidiagonal boundary conditions is studied. Similar to the case of periodic boundary conditions, we identify three different phases. In two of those, the underlying conformal field theory can be identified to be related to the twisted \(U(1)\) Kac-Moody algebra. In contrast, the finite size scaling in the third regime, whose critical behaviour with the (quasi-)periodic BCs is related to the 2d black hole CFTs possessing a non-compact degree of freedom, is more subtle. Here with antidiagonal BCs imposed, the corrections to the scaling of the ground state grow logarithmically with the system size, while the energy gaps appear to close logarithmically. Moreover, we obtain an explicit formula for the Q-operator which is useful for numerical implementation.

Organisationseinheit(en)
Institut für Theoretische Physik
Typ
Artikel
Journal
Nuclear Physics B
Band
1006
Anzahl der Seiten
13
ISSN
0550-3213
Publikationsdatum
09.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Kern- und Hochenergiephysik
Elektronische Version(en)
https://arxiv.org/abs/2405.20919 (Zugang: Offen)
https://doi.org/10.1016/j.nuclphysb.2024.116655 (Zugang: Offen)