Integrable boundary conditions for staggered vertex models
- verfasst von
- Holger Frahm, Sascha Gehrmann
- Abstract
Yang-Baxter integrable vertex models with a generic \( \mathbb{Z}_2 \)-staggering can be expressed in terms of composite \(\mathbb{R}\)-matrices given in terms of the elementary \(R\)-matrices. Similarly, integrable open boundary conditions can be constructed through generalized reflection algebras based on these objects and their representations in terms of composite boundary matrices \(\mathbb{K}^\pm\). We show that only two types of staggering yield a local Hamiltonian with integrable open boundary conditions in this approach. The staggering in the underlying model allows for a second hierarchy of commuting integrals of motion (in addition to the one including the Hamiltonian obtained from the usual transfer matrix), starting with the so-called quasi momentum operator. In this paper, we show that this quasi momentum operator can be obtained together with the Hamiltonian for both periodic and open models in a unified way from enlarged Yang-Baxter or reflection algebras in the composite picture. For the special case of the staggered six-vertex model, this allows constructing an integrable spectral flow between the two local cases.
- Organisationseinheit(en)
-
Institut für Theoretische Physik
- Typ
- Artikel
- Journal
- Journal of Physics A: Mathematical and Theoretical
- Band
- 56
- Anzahl der Seiten
- 32
- ISSN
- 1751-8113
- Publikationsdatum
- 26.01.2023
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.), Statistische und nichtlineare Physik, Statistik und Wahrscheinlichkeit, Mathematische Physik, Modellierung und Simulation
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2209.06182 (Zugang:
Offen)
https://doi.org/10.1088/1751-8121/acb29f (Zugang: Offen)