Stochastic formulation of energy-level statistics
- verfasst von
- H. Hasegawa, H. J. Mikeska, H. Frahm
- Abstract
It is shown that the joint distribution of energy eigenvalues for systems with a varying degree of nonintegrability which has been obtained dynamically by T. Yukawa [Phys. Rev. Lett. 54, 1883 (1985)] can also be deduced by putting his equations of motion in the form of stochastic differential equations. We obtain an interpolation formula for the nearest-neighbor-spacing distribution as a smooth one-parameter family of density functions P(S), 0<. This distribution retains a nonanalytic nature near 0; when =0 it agrees with the Poissonian distribution but whenever 0 it is proportional to S for small S, as predicted by M. Robnik [J. Phys. A 20, L495 (1987)]. A considerable improvement on the agreement between the energy-level histogram in a real system (hydrogen in a magnetic field) and theoretical formulas which have been studied by Wintgen and Friedrich [Phys. Rev. A 35, 1464 (1987)] is demonstrated.
- Organisationseinheit(en)
-
Institut für Theoretische Physik
- Externe Organisation(en)
-
Kyoto University
- Typ
- Artikel
- Journal
- Physical Review A
- Band
- 38
- Seiten
- 395-399
- Anzahl der Seiten
- 5
- ISSN
- 1050-2947
- Publikationsdatum
- 01.01.1988
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Atom- und Molekularphysik sowie Optik
- Elektronische Version(en)
-
https://doi.org/10.1103/PhysRevA.38.395 (Zugang:
Unbekannt)
https://doi.org/10.15488/5096 (Zugang: Offen)