Stochastic formulation of energy-level statistics

verfasst von
H. Hasegawa, H. J. Mikeska, H. Frahm
Abstract

It is shown that the joint distribution of energy eigenvalues for systems with a varying degree of nonintegrability which has been obtained dynamically by T. Yukawa [Phys. Rev. Lett. 54, 1883 (1985)] can also be deduced by putting his equations of motion in the form of stochastic differential equations. We obtain an interpolation formula for the nearest-neighbor-spacing distribution as a smooth one-parameter family of density functions P(S), 0<. This distribution retains a nonanalytic nature near 0; when =0 it agrees with the Poissonian distribution but whenever 0 it is proportional to S for small S, as predicted by M. Robnik [J. Phys. A 20, L495 (1987)]. A considerable improvement on the agreement between the energy-level histogram in a real system (hydrogen in a magnetic field) and theoretical formulas which have been studied by Wintgen and Friedrich [Phys. Rev. A 35, 1464 (1987)] is demonstrated.

Organisationseinheit(en)
Institut für Theoretische Physik
Externe Organisation(en)
Kyoto University
Typ
Artikel
Journal
Physical Review A
Band
38
Seiten
395-399
Anzahl der Seiten
5
ISSN
1050-2947
Publikationsdatum
01.01.1988
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.1103/PhysRevA.38.395 (Zugang: Unbekannt)
https://doi.org/10.15488/5096 (Zugang: Offen)