Determinant representation for a quantum correlation function of the lattice sine-Gordon model
- verfasst von
- Fabian H.L. Eßler, Holger Frahm, Alexander R. Its, Vladimir E. Korepin
- Abstract
We consider a completely integrable lattice regularization of the sine-Gordon model with discrete space and continuous time. We derive a determinant representation for a correlation function which in the continuum limit turns into the correlation function of local fields. The determinant is then embedded into a system of integrable integro-differential equations. The leading asymptotic behaviour of the correlation function is described in terms of the solution of a Riemann-Hilbert Problem (RHP) related to the system of integro-differential equations. The leading term in the asymptotical decomposition of the solution of the RHP is obtained.
- Organisationseinheit(en)
-
Institut für Theoretische Physik
- Externe Organisation(en)
-
University of Oxford
Indiana University-Purdue
Stony Brook University (SBU)
Kyoto University
- Typ
- Artikel
- Journal
- Journal of Physics A: Mathematical and General
- Band
- 30
- Seiten
- 219-244
- Anzahl der Seiten
- 26
- ISSN
- 0305-4470
- Publikationsdatum
- 07.01.1997
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Statistische und nichtlineare Physik, Mathematische Physik, Allgemeine Physik und Astronomie
- Elektronische Version(en)
-
https://doi.org/10.1088/0305-4470/30/1/016 (Zugang:
Unbekannt)