Determinant representation for a quantum correlation function of the lattice sine-Gordon model

verfasst von
Fabian H.L. Eßler, Holger Frahm, Alexander R. Its, Vladimir E. Korepin
Abstract

We consider a completely integrable lattice regularization of the sine-Gordon model with discrete space and continuous time. We derive a determinant representation for a correlation function which in the continuum limit turns into the correlation function of local fields. The determinant is then embedded into a system of integrable integro-differential equations. The leading asymptotic behaviour of the correlation function is described in terms of the solution of a Riemann-Hilbert Problem (RHP) related to the system of integro-differential equations. The leading term in the asymptotical decomposition of the solution of the RHP is obtained.

Organisationseinheit(en)
Institut für Theoretische Physik
Externe Organisation(en)
University of Oxford
Indiana University-Purdue
Stony Brook University (SBU)
Kyoto University
Typ
Artikel
Journal
Journal of Physics A: Mathematical and General
Band
30
Seiten
219-244
Anzahl der Seiten
26
ISSN
0305-4470
Publikationsdatum
07.01.1997
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Statistische und nichtlineare Physik, Mathematische Physik, Allgemeine Physik und Astronomie
Elektronische Version(en)
https://doi.org/10.1088/0305-4470/30/1/016 (Zugang: Unbekannt)