Abgeschlossene Arbeiten
Doktorarbeiten
- Michael Zurel, Classical descriptions of quantum computations : foundations of quantum computation via hidden variable models, quasiprobability representations, and classical simulation algorithms, 2024 (betreut von Robert Raußendorf)
- Oleg Kabernik, Reductions in finite-dimensional quantum mechanics : from symmetries to operator algebras and beyond, 2021 (betreut von Robert Raußendorf)
Masterarbeiten
- Ryohei Weil, Quantifying resource states and efficient regimes of measurement-based quantum computation on a superconducting processor, 2024 (betreut von Robert Raußendorf)
- Luis Mantilla Calderon, Measurement-based quantum machine learning, 2023 (betreuet von Dmytro Bondarenko, Polina Feldmann, Robert Raußendorf)
- Arnab Adhikary, Symmetry protected measurement-based quantum computation in finite spin chains, 2021 (betreut von Robert Raußendorf)
- Paul Herringer, Classification of quantum wire in tensor network states with a local Pauli symmetry, 2021 (betreut von Robert Raußendorf)
- Michael Zurel, Hidden variable models and classical simulation algorithms for quantum computation with magic states on qubits, 2020 (betreut von Robert Raußendorf)
- David Stephen, Computational power of one-dimensional symmetry-protected topological phases, 2017 (betreut von Robert Raußendorf)
Bachelorarbeiten
- Elektra Dakogiannis, Coherent Noise Models in Concatenated Stabilizer Codes, 2023 (betreut von Gabrielle Tournaire, Robert Raußendorf)
- Julian Ding, Simulation of the Kitaev planar code error threshold under a photonic local error model, 2022 (betreut von Robert Raußendorf)
- Ryohei Weil, A Simulation of a Simulation : Algorithms for Symmetry-Protected Measurement-Based Quantum Computing Experiments, 2022 (betreut von Robert Raußendorf)
- Aslan Zhang, Compilation Optimization for Measurement-based Quantum Computation on Graph States, 2022 (bereut von Polina Feldmann, Robert Raußendorf)
Aktuelle Themenvorschläge
Masterarbeiten
-
Embedding experimental data in quantum theory and verifying quantum computation (Ansprechperson: Martin Plávala)
Given a statistics resulting from an experiment, can we determine what type of system was used in the experiment? It is known that one can rule out description using classical theory by verifying the non-contextuality of the model. The goal of this project is to find similar criteria for verifying quantum description using quantum systems of fixed dimension. If successful, the result will be generalized to provide methods of verification of depth of circuits in quantum computers. The project will likely be solved using a combination of analytic and numeric methods.
-
k-compatibility of channels in general probabilistic theories (Ansprechperson: Martin Plávala)
General probabilistic theories (GPTs) are a class of theories that include both classical and quantum information as well as other mathematically consistent theories. GPTs are a point of interest in quantum foundations when attempting to derive quantum theory, but they are also used in quantum information to reformulate and solve problems. A channel is a transformation of the states of the system, such as for example time evolution for a given amount of time. A set of channels is k-compatible if given k exact copies of the input state, there exist another channel that outputs a state that is locally identical with outputs of all of the considered channels. The goal of the project is to investigate when a set of channels is k-compatible within a given GPT, special attention will be put on connecting k-compatibility of several instances of the identify channel and geometric properties of the considered state space. The project will mostly involve only analytic methods and will be close to mathematical research.
-
Products of POVMs (Ansprechperson: Martin Plávala)
POVMs are a mathematical representation of the measurement devices in quantum information. Most notably a set of POVMs can be compatible or jointly measurable, meaning that all of the measurements represented by the respective POVMs can be reduced to only a single measurement. The goal of the project is to investigate when for compatible POVMs the single measurement can be constructed using some notion of operator product, what are the properties of such operator products and whether they have any operational meaning. The project will mostly involve analytic methods with some numerics to construct appropriate examples.
Bachelorarbeiten
Laufende Arbeiten
Doktorarbeiten
- Arnab Adhikary, Computational phases of quantum matter — Korrelationen verstehen (betreut von Robert Raußendorf)
- Ruben Campos Delgado, Quantenfehlertoleranz — Effiziente Quantencodes (betreut von Robert Raußendorf)
- Poya Haghnegahdar, Messungsbasiertes Quantenrechnen auf Affleck-Kennedy-Lieb-Tasaki Zuständen (betreut von Robert Raußendorf)
- Lukas Hantzko, Computational phases of quantum matter — Algebraische Struktur (betreut von Robert Raußendorf)
- Paul Herringer, Computational phases of quantum matter — Verbindungen mit der Physik kondensierter Materie (betreut von Robert Raußendorf)
- Thierry Kaldenbach, Graphenzustände und Quantenalgorithmen (betreut von Robert Raußendorf)
- Marvin Schwiering, Quantenrechner—Architektur (betreut von Robert Raußendorf)
- Gabrielle Tournaire, Fehlertolerantes Quantenrechen mit topologischen Quantencodes (betreut von Robert Raußendorf)
Masterarbeiten
- Niko Trittschanke, Handling Quantum Errors under Realistic Noise Models for Trapped Ion Quantum Devices (betreut von Robert Raußendorf)
Bachelorarbeiten