Publications of Holger Frahm
Monograph
Essler, F. H. L., Frahm, H., Göhmann, F., Klümper, A., and Korepin, V. E. (2005). The One-Dimensional Hubbard Model.
Cambridge University Press. doi.org/10.1017/CBO9780511534843
Papers
Showing results 1 - 20 out of 105
Frahm, H., & Gehrmann, S. (2024). Finite-size spectrum of the staggered six-vertex model with antidiagonal boundary conditions. Nuclear Physics B, 1006, Article 116655. https://doi.org/10.1016/j.nuclphysb.2024.116655
More...
Frahm, H., Gehrmann, S., & Kotousov, G. A. (2024). Scaling limit of the staggered six-vertex model with \(U_q(\mathfrak{sl}(2))\) invariant boundary conditions. SciPost Physics, 16(6), Article 149. https://doi.org/10.21468/SciPostPhys.16.6.149
More...
Frahm, H., Gehrmann, S., Nepomechie, R. I., & Retore, A. L. (2023). The D(2)3 spin chain and its finite-size spectrum. Journal of High Energy Physics, 2023(11), Article 095. https://doi.org/10.1007/JHEP11(2023)095
More...
Frahm, H., & Martins, M. J. (2023). Uq[OSp(3|2)] quantum chains with quantum group invariant boundaries. Nuclear Physics B, 995, Article 116329. https://doi.org/10.48550/arXiv.2307.09412, https://doi.org/10.1016/j.nuclphysb.2023.116329
More...
Westerfeld, D., Großpietsch, M., Kakuschke, H., & Frahm, H. (2023). Factorization of density matrices in the critical RSOS models. Journal of Statistical Mechanics: Theory and Experiment, 2023, Article 083104. https://doi.org/10.1088/1742-5468/aceeef
More...
Frahm, H., & Gehrmann, S. (2023). Integrable boundary conditions for staggered vertex models. Journal of Physics A: Mathematical and Theoretical, 56(2), Article 025001. https://doi.org/10.48550/arXiv.2209.06182, https://doi.org/10.1088/1751-8121/acb29f
More...
Frahm, H., & Martins, M. J. (2022). \(OSp(n|2m)\) quantum chains with free boundaries. Nuclear Physics B, 980, Article 115799. https://doi.org/10.1016/j.nuclphysb.2022.115799
More...
Frahm, H., & Gehrmann, S. (2022). Finite size spectrum of the staggered six-vertex model with \(U_q(sl(2))\)-invariant boundary conditions. Journal of High Energy Physics, 2022(1), Article 70. https://doi.org/10.1007/JHEP01(2022)070
More...
Frahm, H., & Westerfeld, D. (2021). Density matrices in integrable face models. SciPost Physics, 11(3), Article 057. https://doi.org/10.21468/SciPostPhys.11.3.057
More...
Borcherding, D., & Frahm, H. (2019). Condensates of interacting non-Abelian SO(5)Nf anyons. Journal of High Energy Physics, 2019(10), Article 54. https://doi.org/10.1007/JHEP10(2019)054
More...
Frahm, H., Hobuß, K., & Martins, M. J. (2019). On the critical behaviour of the integrable q-deformed OSp(3|2) superspin chain. Nuclear Physics B, 946, Article 114697. https://doi.org/10.1016/j.nuclphysb.2019.114697, https://doi.org/10.15488/10411
More...
Frahm, H., Morin-Duchesne, A., & Pearce, P. A. (2019). Extended T-systems, Q matrices and T-Q relations for sℓ(2) models at roots of unity. Journal of Physics A: Mathematical and Theoretical, 52(28), Article 285001. https://doi.org/10.48550/arXiv.1812.01471, https://doi.org/10.1088/1751-8121/ab2490
More...
Borcherding, D., & Frahm, H. (2018). Condensation of non-Abelian SU(3) Nf anyons in a one-dimensional fermion model. Journal of Physics A: Mathematical and Theoretical, 51(49), Article 495002. https://doi.org/10.48550/arXiv.1808.05808, https://doi.org/10.1088/1751-8121/aaea9b
More...
Frahm, H., & Martins, M. J. (2018). The fine structure of the finite-size effects for the spectrum of the OSp(n|2m) spin chain. Nuclear Physics B, 930, 545-562. https://doi.org/10.1016/j.nuclphysb.2018.03.016, https://doi.org/10.15488/3390
More...
Borcherding, D., & Frahm, H. (2018). Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model. Journal of Physics A: Mathematical and Theoretical, 51(19), Article 195001. https://doi.org/10.48550/arXiv.1706.09822, https://doi.org/10.1088/1751-8121/aaba1e
More...
Finch, P. E., Flohr, M., & Frahm, H. (2018). Zn clock models and chains of so(n)2 non-Abelian anyons: Symmetries, integrable points and low energy properties. Journal of Statistical Mechanics: Theory and Experiment, 2018(2), Article 023103. https://doi.org/10.1088/1742-5468/aaa788
More...
Frahm, H., & Hobuß, K. (2017). Spectral flow for an integrable staggered superspin chain. Journal of Physics A: Mathematical and Theoretical, 50(29), Article 294002. https://doi.org/10.1088/1751-8121/aa77e7
More...
Braylovskaya, N., Finch, P. E., & Frahm, H. (2016). Exact solution of the D3 non-Abelian anyon chain. Physical Review B, 94(8), Article 085138. https://doi.org/10.1103/PhysRevB.94.085138, https://doi.org/10.15488/5075
More...
Frahm, H., & Karaiskos, N. (2015). Non-Abelian SU(3)k anyons: Inversion identities for higher rank face models. Journal of Physics A: Mathematical and Theoretical, 48(48), Article 484001. https://doi.org/10.1088/1751-8113/48/48/484001
More...
Frahm, H., & Martins, M. J. (2015). Finite-size effects in the spectrum of the OSp(3|2) superspin chain. Nuclear Physics B, 894, 665-684. https://doi.org/10.1016/j.nuclphysb.2015.03.021
More...
Conference Proceedings
Finch, P. E., & Frahm, H. (2012). Collective states of D(D3) non-abelian anyons. In Low Dimensional Physics and Gauge Principles: Matinyan Festschrift (pp. 134-145). World Scientific Publishing Co. Pte Ltd. https://doi.org/10.1142/9789814440349_0010
Frahm, H., Essler, F. H. L., & Saleur, H. (2005). The integrable sl(2/1) superspin chain and the spin quantum Hall effect. In B. Kramer (Ed.), Advances in Solid State Physics (Vol. 45, pp. 185-196). (Advances in Solid State Physics; Vol. 45). Springer Berlin Heidelberg. https://doi.org/10.1007/11423256_15
Zeitler, U., Hapke-Wurst, I., Sarkar, D., Haug, R. J., Frahm, H., Pierz, K., & Jansen, A. G. M. (2002). High Magnetic Fields in Semiconductor Nanostructures: Spin Effects in Single InAs Quantum Dots. In B. Kramer (Ed.), Advances in Solid State Physics (Vol. 42, pp. 3-12). Article Chapter 1 (Advances in Solid State Physics; Vol. 42). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45618-X_1
Meyer, J. M., Hapke-Wurst, I., Zeitler, U., Haug, R. J., Frahm, H., Jansen, A. G. M., & Pierz, K. (2001). Spin effects in InAs quantum dots: Tunneling experiments in tilted magnetic fields. In N. Miura, & T. Ando (Eds.), Proceedings of the 25th International Conference on the Physics of Semiconductors Part I: Osaka, Japan, September 17–22, 2000 (pp. 845-846). (Springer Proceedings in Physics; Vol. 87).
Frahm, H. (1997). Lösbare Modelle und konforme Invarianz: Kritische Eigenschaften korrelierter Elektronen in einer Dimension. In Jahrbuch der Akademie der Wissenschaften in Göttingen (pp. 52-63). Vandenhoeck and Ruprecht GmbH and Co. KG.
Frahm, H., Its, A. R., & Korepin, V. E. (1996). An operator-valued Riemann-Hilbert problem associated with the XXX model. In D. Levi, L. Vinet, & P. Winternitz (Eds.), Symmetries and Integrability of Difference Equations (pp. 133-142). (CRM Proceedings & Lecture Notes; Vol. 9).
Frahm, H., & Schadschneider, A. (1995). On the Bethe Ansatz Soluble Degenerate Hubbard Model. In D. Baeriswyl, D. K. Campbell, J. M. P. Carmelo, F. Guinea, & E. Louis (Eds.), The Hubbard Model: Its Physics and Mathematical Physics (pp. 21-28). (NATO ASI Series B; Vol. 343). Plenum Press. https://doi.org/10.1007/978-1-4899-1042-4_2
Frahm, H., & Korepin, V. E. (1994). Critical Exponents in the One-Dimensional Hubbard Model. In S. Randbjar-Daemi, & Y. Lu (Eds.), Quantum Field Theory and Condensed Matter Physics: Proceedings of the Fourth Trieste Conference (pp. 57-69). World Scientific Publishing Co. Pte Ltd. https://doi.org/10.1142/S0217979294000142
Frahm, H. (1991). On the construction of integrable XXZ Heisenberg models with arbitrary spin. In Inverse Scattering and Applications (pp. 41-45). (Contemporary Mathematics; Vol. 122). https://doi.org/10.1090/conm/122/1135854
Mikeska, H. J., & Frahm, H. (1987). Chaos in a Driven Quantum Spin System. In E. R. Pike, & L. A. Lugiato (Eds.), Chaos, Noise and Fractals (pp. 117-136). Adam Hilger. https://doi.org/10.1201/9781003069553-9
Mikeska, H. J., & Frahm, H. (1987). The Kicked Quantum Spin: A Model System for Quantum Chaos. In Magnetic Excitations and Fluctuations II (pp. 75-78). Article Chapter 16 (Springer Proceedings in Physics; Vol. 23). https://doi.org/10.1007/978-3-642-73107-5_16
Mikeska, H. J., & Frahm, H. (1987). Towards a Quantitative Theory of Solitons in One-Dimensional Magnets: Quantum Effects, Out-of-Plane Fluctuations and the Specific Heat. In A. R. Bishop, D. K. Campbell, P. Kumar, & S. E. T. (Eds.), Nonlinearity in Condensed Matter (pp. 53-58). Article Chapter 5 (Springer Series in Solid-State Sciences; Vol. 69). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-83033-4_5