FOR 2316: Correlations in Integrable Quantum Many-Body Systems
The goal of the research unit is the development of many-body standard reference systems with known static and dynamical correlation functions at arbitrary temperature, on the lattice and in the continuum, very much like Bosonization provides standard reference systems near \(T = 0\), namely conformal field theories with central charges \(c = 1\) and known static low-temperature properties.
Correlations in Integrable Quantum Many-Body Systems
Participating Instutions
Project: Spin chains and vertex models based on superalgebras
Spin chains and two-dimensional vertex models with an underlying superalgebra structure appear naturally in certain statistical physics models, e.g. intersecting loops, and disordered electron systems. In several examples for such models the low energy effective theory describing their critical behaviour has displayed rather unusual properties: the lack of unitarity in these systems allows for continua of critical exponents leading to a fine structure with strong subleading corrections to scaling in the finite size spectrum. This is a signature of non-compact degrees of freedom emerging in the continuum limit of these models. In this project we plan to study the properties of these systems in the context of integrable superspin chains. In particular we want to identify the corresponding conformal field theories and characterize the continuous part of their spectrum. In addition, the effect of boundary conditions on the critical properties will be addressed. To deal with the strong finite-size effects present in these systems we shall develop new analytical methods for the analysis of the spectral problem.
Publications
Datasets
Frahm, H. & Gehrmann, S. (2024). Dataset: Bethe ansatz data for the staggered six-vertex model with antidiagonal boundary conditions. DOI:10.25835/hl5nqg81
Frahm, H. & Martins, M. J. (2023). Dataset: Finite size data for \(U_q[OSp(3|2)]\) quantum chains with quantum group invariant boundaries. DOI:10.25835/ypipefbz
Frahm, H.,Hobuß, K., & Martins, M. J. (2019). Dataset: Finite size data for the q-deformed OSp(3|2) superspin chain. DOI:10.25835/0064330
Project: Non-Abelian anyons
Quasi particles in topological quantum liquids such as the fractional Quantum Hall states and certain two-dimensional frustrated magnets display unconventional quantum statistics. The conserved topological charge of these non-Abelian anyons is protected and has spawned interest for such systems in the context of quantum computation. In this project we plan to study the properties of interacting many-anyon systems whose construction is based on the mathematical structures describing the fundamental operations of fusion and braiding. Upon fine-tuning of the interactions these models can be embedded into a family of commuting operators. We shall develop functional methods to exploit local identities present in these integrable models for the solution of their spectral problem. Our investigation of integrable anyon chains will be complemented by studies of non-integrable deformations thereof to gain understanding into the emergence of unconventional boundary degrees of freedom and their realization as topological quantum impurities in electronic systems.
Publications
Showing results 1 - 8 out of 8